

US009054323B2

(12) United States Patent

Kwong et al.

(10) Patent No.:

US 9,054,323 B2

(45) **Date of Patent:**

Jun. 9, 2015

(54) SECONDARY HOLE TRANSPORTING LAYER WITH DIARYLAMINO-PHENYL-CARBAZOLE COMPOUNDS

(75) Inventors: Raymond Kwong, Fo Tan (HK); Siu Tung Lam, Apleichau (HK); Chi Hang

Lee, Chaiwan (HK); Sze Kui Lam,

Kowloon (HK)

(73) Assignee: Universal Display Corporation, Ewing,

NJ (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 731 days.

(21) Appl. No.: 13/421,489

(22) Filed: Mar. 15, 2012

(65) **Prior Publication Data**

US 2013/0241401 A1 Sep. 19, 2013

(51) **Int. Cl.**

 H01L 51/50
 (2006.01)

 H01L 51/00
 (2006.01)

 C07D 409/14
 (2006.01)

 C07D 405/04
 (2006.01)

 C07D 409/04
 (2006.01)

 C07D 209/86
 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

		0/4000	
4,769,292	Α	9/1988	Tang et al.
5,061,569	A	10/1991	VanSlyke et al.
5,247,190	Α	9/1993	Friend et al.
5,703,436	A	12/1997	Forrest et al.
5,707,745	A	1/1998	Forrest et al.
5,834,893	A	11/1998	Bulovic et al.
5,844,363	A	12/1998	Gu et al.
6,013,982	A	1/2000	Thompson et al.
6,087,196	A	7/2000	Sturm et al.
6,091,195	A	7/2000	Forrest et al.
6,097,147	A	8/2000	Baldo et al.
6,294,398	B1	9/2001	Kim et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP	0650955	5/1995
EP	1725079	11/2006

(Continued)

OTHER PUBLICATIONS

Kuwabara, Yoshiyuki et al., "Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4',4"-Tri(*N*-carbazolyl)triphenylamine (TCTA) and 4,4',4"-Tris(3-methylphenylphenyl-amino)triphenylamine (*m*-MTDATA), as Hole-Transport Materials," *Adv. Mater.*, 6(9):677-679 (1994).

(Continued)

Primary Examiner — Gregory Clark (74) Attorney, Agent, or Firm — Duane Morris LLP

(57) ABSTRACT

Novel diarylamino phenyl carbazole compounds are provided. By appropriately selecting the nature of the diarylamino substituent and the substitution on the carbazole nitrogen, compounds with appropriate HOMO and LUMO energies can be obtained for use as materials in a secondary hole transport layer.

19 Claims, 3 Drawing Sheets

(56)	Referer	ices Cited	JP	2008074939	10/2009	
, ,	I O DATENT		KR WO	20110109687 WO 0139234	10/2011 5/2001	
l	J.S. PATENT	DOCUMENTS	WO	WO 0139234 WO 0202714	1/2002	
6,303,238	B1 10/2001	Thompson et al.	WO	WO 0215645	2/2002	
6,337,102		Forrest et al.	WO	WO 03040257	5/2003	
6,468,819	B1 10/2002	Kim et al.	WO	WO 03060956	7/2003	
6,528,187		Okada	WO WO	WO 2004093207 WO 2004107822	10/2004 12/2004	
6,687,266 I		Ma et al.	WO	WO 2005014551	2/2005	
6,835,469 I 6,921,915 I		Kwong et al. Takiguchi et al.	WO	WO 2005019373	3/2005	
7,087,321		Kwong et al.	WO	WO 2005030900	4/2005	
7,090,928	B2 8/2006	Thompson et al.	WO	WO 2005089025	9/2005	
7,154,114		Brooks et al.	WO WO	WO 2005123873 WO 2006009024	12/2005 1/2006	
7,250,226		Tokito et al. Walters et al.	WO	WO 2006056418	6/2006	
7,279,704 I 7,332,232 I		Ma et al.	WO	WO 2006072002	7/2006	
7,338,722		Thompson et al.	WO	WO 2006082742	8/2006	
7,393,599	B2 7/2008	Thompson et al.	WO	WO 2006098120	9/2006	
7,396,598		Takeuchi et al.	WO WO	WO 2006100298 WO 2006103874	9/2006 10/2006	
7,431,968 I 7,445,855 I		Shtein et al. Mackenzie et al.	WO	WO 2006114966	11/2006	
7,534,505		Lin et al.	WO	WO 2006132173	12/2006	
7,968,146		Wagner et al.	WO	WO 2007002683	1/2007	
2002/0034656	A1 3/2002	Thompson et al.	WO	WO 2007004380	1/2007	
2002/0134984		Igarashi	WO WO	WO 2007063754 WO 2007063796	6/2007 6/2007	
2002/0158242 . 2003/0138657 .		Son et al. Li et al.	WO	WO 2007003790 WO 2008057394	5/2008	
2003/0152802		Tsuboyama et al.	WO	WO 2008101842	8/2008	
2003/0162053		Marks et al.	WO	WO 2008132085	11/2008	
2003/0175553	A1 9/2003	Thompson et al.	WO	WO 2009000673	12/2008	
2003/0230980		Forrest et al.	WO WO	WO 2009003898 WO 2009008311	1/2009 1/2009	
2004/0036077			WO	WO 2009018009	2/2009	
2004/0137267 . 2004/0137268 .		Igarashi et al. Igarashi et al.	WO	WO 2009050290	4/2009	
2004/0174116		Lu et al.	WO	WO 2008056746	5/2009	
2005/0025993		Thompson et al.	WO	WO 2009021126	5/2009	
2005/0112407		Ogasawara et al.	WO WO	WO 2009062578 WO 2009063833	5/2009 5/2009	
2005/0238919		Ogasawara	WO	WO 2009063833 WO 2009066778	5/2009	
2005/0244673 . 2005/0260441 .		Satoh et al. Thompson et al.	WO	WO 2009066779	5/2009	
2005/0260449	A1 11/2005	Walters et al.	WO	WO 2009086028	7/2009	
2006/0008670		Lin et al.	WO	WO 2009100991	8/2009	
2006/0202194		Jeong et al.	WO WO	WO 2010011390 WO 2011152596	1/2010 12/2011	
2006/0240279 . 2006/0251923 .		Adamovich et al. Lin et al.	WO			
2006/0251925				OTHER I	PUBLICATIONS	
2006/0280965		Kwong et al.	D1	Datte Mania Innaida	C -4 -1 6E:4 E-	1 C A 111
2007/0190359		Knowles et al.		e, Betty Marie Jennifer les as Organic Ligano		
2007/0278938		Yabunouchi et al.		" <i>Adv. Mater.</i> , 16(22):2		ent mutum Com-
2008/0015355 . 2008/0018221 .		Schafer et al. Egen et al.		Yung-Liang et al., "Org		g Diodes Based on
2008/0018221		Yabunouchi et al.		-Neutral Ru ^{II} PHosp		
2008/0124572		Mizuki et al.	17(8):1	059-1064 (2005).		
2008/0220265		Xia et al.		Jinsong et al., "Hig		
2008/0297033		Knowles et al.		orescent Light-Emittin		
2009/0008605 . 2009/0009065 .		Kawamura et al. Nishimura et al.		isoquinolinato-C2,N)ir -743 (2007).	ididili(111) Derivati	ves, Aav. Maier.,
2009/0009003 .		Iwakuma et al.		Wai-Yeung, "Multifun	etional Iridium Co	mplexes Based on
2009/0030202		Iwakuma et al.		ole Modules as Highly		
2009/0039776		Yamada et al.		Int. Ed., 45:7800-7803		
2009/0045730	A1 2/2009	Nishimura et al.		C.W. and VanSLYKE		
2009/0045731		Nishimura et al.		"Appl. Phys. Lett., 51		
2009/0101870		Prakash et al.		, Chihaya et al., "Orga e Conductor as an l		
2009/0108737 .		Kwong et al.		1489-1491 (1989).	Ellitting Layer, 2	appi. 1 nys. Len.,
2009/0115316 . 2009/0165846 .		Zheng et al. Johannes et al.		guang et al., "Triplet l	Luminescent Dinuc	clear-Gold(I) Com-
2009/0163846 .		Lin et al.		ased Light-Emitting I		
2009/0179554		Kuma et al.		Phys. Lett., 74(10):1361		- "
2012/0043531		Jung et al 257/40		Zhiqiang et al., "Brigh		
2013/0207092		Huh et al	•	ubstituted ter-(phenyle	ene-vinylene) deriv	ative," Appl. Phys.
				4(6):865-867 (1999).	1 Dl. 1	
FOR	REIGN PATE	NT DOCUMENTS		hang-Lyoul et al., "Po s Doped with Tris(2-		
ED	2024529	3/2000		s Doped with Tris(2- r," Appl. Phys. Lett., 77		
EP JP 200	2034538 05011610	3/2009 1/2005		L.S. et al., "Anode M		
	07123392	5/2007		by Low-Frequency Pl		
	07254297	10/2007		ett., 78(5):673-675 (20		3, 11

(56) References Cited

OTHER PUBLICATIONS

Ikai, Masamichi and Tokito, Shizuo, "Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer," *Appl. Phys. Lett.*, 79(2):156-158 (2001).

Wang, Y. et al., "Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds," *Appl. Phys. Lett.*, 79(4):449-451 (2001).

Kwong, Raymond C. et al., "High Operational Stability of Electrophosphorescent Devices," *Appl. Phys. Lett.*, 81(1):162-164 (2002).

Holmes, R.J. et al., "Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer," *Appl. Phys. Lett.*, 82(15):2422-2424 (2003).

Sotoyama, Wataru et al., "Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing NCN-Coordinating Tridentate Ligand," *Appl. Phys. Lett.*, 86:153505-1-153505-3 (2005).

Okumoto, Kenji et al., "Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%," *Appl. Phys. Lett.*, 89:063504-1-063504-3 (2006).

Kanno, Hiroshi et al., "Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material," *Appl. Phys. Lett.*, 90:123509-1-123509-3 (2007).

Aonuma, Masaki et al., "Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes," *Appl. Phys. Lett.*, 90:183503-1-183503-3 (2007).

Sun, Yiru and Forrest, Stephen R., "High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers," *Appl. Phys. Lett.*, 91:263503-1-263503-3 (2007).

Adachi, Chihaya et al., "High-Efficiency Red Electrophosphorescence Devices," *Appl. Phys. Lett.*, 78(11):1622-1624 (2001).

Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, *Chem. Commun.*, 2906-2908 (2005).

Hamada, Yuji et al., "High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato)beryllium as an Emitter," *Chem. Lett.*, 905-906 (1993).

Nishida, Jun-ichi et al., "Preparation, Characterization, and Electroluminescence Characteristics of α -Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands," *Chem. Lett.*, 34(4):592-593 (2005).

Mi, Bao-Xiu et al., "Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode: an Isoindole Derivative," *Chem. Mater.*, 15(16):3148-3151 (2003).

Huang, Wei-Sheng et al., "Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands," *Chem. Mater.*, 16(12):2480-2488 (2004).

Niu, Yu-Hua et al., "Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex," *Chem. Mater.*, 17(13):3532-3536 (2005).

Lo, Shih-Chun et al., "Blue Phosphorescence from Iridium(III) Complexes at Room Temperature," *Chem. Mater.*, 18(21):5119-5129 (2006).

Takizawa, Shin-ya et al., "Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2- α]pyridine Ligands: Tuning of Emission

Color toward the Blue Region and Application to Polymer Light-Emitting Devices," *Inorg. Chem.*, 46(10):4308-4319 (2007).

Lamansky, Sergey et al., "Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes," *Inorg. Chem.*, 40(7):1704-1711 (2001).

Ranjan, Sudhir et al., "Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes," *Inorg. Chem.*, 42(4):1248-1255 (2003).

Noda, Tetsuya and Shirota, Yasuhiko, "5,5'-Bis(dimesitylbory1)-2,2'-bithiophene and 5,5"Bis(dimesitylbory1)-2,2':5',2"-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials," *J. Am. Chem. Soc.*, 120 (37):9714-9715 (1998).

Sakamoto, Youichi et al., "Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers," *J. Am. Chem. Soc.*, 122(8):1832-1833 (2000).

Adachi, Chihaya et al., "Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device," *J. Appl. Phys.*, 90(10):5048-5051 (2001).

Shirota, Yasuhiko et al., "Starburst Molecules Based on π -Electron Systems as Materials for Organic Electroluminescent Devices," *Journal of Luminescence*, 72-74:985-991 (1997).

Inada, Hiroshi and Shirota, Yasuhiko, "1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials," *J. Mater. Chem.*, 3(3):319-320 (1993).

Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, *Jpn. J. Appl. Phys.*, 32:L917-L920 (1993).

Van Slyke, S. A. et al., "Organic Electroluminescent Devices with Improved Stability," *Appl. Phys. Lett.*, 69(15):2160-2162 (1996).

Guo, Tzung-Fang et al., "Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices," *Organic Electronics*, 1:15-20 (2000)

Palilis, Leonidas C., "High Efficiency Molecular Organic Light-Emitting Diodes Based on Silole Derivatives and Their Exciplexes," *Organic Electronics*, 4:113-121 (2003).

Ikeda, Hisao et al., "P-185: Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide," *SID Symposium Digest*, 37:923-926 (2006).

T. Östergård et al., "Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene): Electro-Optical Characteristics Related to Structure," *Synthetic Metals*, 87:171-177 (1997).

Hu, Nan-Xing et al., "Novel High T_g Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices," Synthetic Metals, 111-112:421-424 (2000).

Salbeck, J. et al., "Low Molecular Organic Glasses for Blue Electroluminescence," *Synthetic Metals*, 91:209-215 (1997).

Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, (1998).

Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999).

* cited by examiner

FIGURE 1

FIGURE 2

Formula I

FIGURE 3

SECONDARY HOLE TRANSPORTING LAYER WITH DIARYLAMINO-PHENYL-CARBAZOLE COMPOUNDS

The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

FIELD OF THE INVENTION

The present invention relates to novel diarylamino phenyl carbazole compounds. In particular, these compounds are useful as materials that can be incorporated into a secondary 20 hole transport layer in OLED devices.

BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.

OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as 50 "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.

One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted $Ir(ppy)_3$, which has the following structure:

2

In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.

As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.

As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between.

As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.

As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level.

As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.

15

20

25

More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.

SUMMARY OF THE INVENTION

In one aspect, a compound having the formula I is provided:

Formula I

In the compound of Formula I, Ar_1 and Ar_2 are independently selected from the group consisting of aryl and heteroaryl, X is selected from the group consisting of O, S, and Se, R_1 and R_2 independently represent mono, di, tri, tetra substitution, or no substitution, and R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, R_3 and R_4 are independently selected from the group consisting of alkyl, heteroalkyl, arylalkyl, aryl, and heteroaryl. In one aspect, R_3 and R_4 are hydrogen or deuterium.

In one aspect, the compound has the formula:

$$Ar_1$$
 Ar_2
 Ar_3
 R_3
 R_4
 R_4
 R_1
 R_4
 R_5
 R_6
 R_7
 R_8
 R_9
 R

4

-continued

$$Ar_1$$
 R_3
 R_4
 R_1
 R_2

In one aspect, Ar_{1I} and Ar_2 are independently selected from the group consisting of:

20

25

30

35

40

45

50

55

In one aspect, A_1 and Ar_2 are independently selected from the group consisting of:

-continued

15 In one aspect, \boldsymbol{A}_1 and \boldsymbol{Ar}_2 are independently selected from the group consisting of:

In one aspect, X is O or S. In one aspect, A_1 and Ar_2 are aryl. In one aspect, the compound is selected from the group consisting of:

-continued

Compound 10

Compound 20 40

Compound 112

30

50

-continued

-continued

Compound 269

Compound 268

Compound 270 40

35

In one aspect, a first device is provided. The first device comprises an organic light emitting device, further comprising: an anode, a cathode, a hole injection layer disposed between the anode and the emissive layer, a first hole transport layer disposed between the hole injection layer and the emissive layer, and a second hole transport layer disposed between the first hole transport layer and the emissive layer, and wherein the second hole transport layer comprises a compound of formula:

Formula II

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_4

In the compound of Formula II, Ar_1 , Ar_2 , and Ar_5 are independently selected from the group consisting of aryl and heteroaryl and R_3 and R_4 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, the compound has the formula:

Formula I

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_4
 R_2

wherein X is selected from the group consisting of O, S, and Se, wherein R_1 and R_2 independently represent mono, di, tri, tetra substitution, or no substitution, and wherein R_1 and R_2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylakyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, the second hole transport layer is disposed adjacent to the first hole transport layer. In one aspect, the first hole transport layer is thicker than the second hole transport layer. In one aspect, the first hole transport layer comprises a compound with the formula:

$$Ar_a$$
 N Ar_b Ar_b

wherein Ar_a , Ar_b , Ar_c and Ar_d are independently selected from the group consisting of aryl and heteroaryl.

In one aspect, the triplet energy of the compound of Formula II is higher than the emission energy of the emissive layer. 5

In one aspect, Ar_1 , Ar_2 and Ar_5 are independently selected from the group consisting of:

In one aspect, Ar_1 and Ar_2 are independently selected from the group consisting of:

In one aspect, Ar_1 and Ar_2 are independently selected from the group consisting of:

In one aspect, the first device further comprises a first dopant material that is an emissive dopant comprising a transition metal complex having at least one ligand or part of the ligand if the ligand is more than bidentate selected from the $_{40}$ group consisting of:

$$R_a$$
 R_a
 R_b
 R_a
 R_b
 R_b

15

35

Formula I

-continued
$$R_{b}$$

$$R_{c}$$

$$R_{b}$$

$$R_{c}$$

$$R_{d}$$

$$R_{d}$$

$$R_{d}$$

$$R_{d}$$

$$R_{d}$$

wherein R_a , R_b , R_c , and R_d may represent mono, di, tri, or tetra substitution, or no substitution and wherein R_a , R_b , R_c , and R_d are independently selected from the group consisting 50 of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and wherein two adjacent substituents of R_a , R_b , R_c , and R_d are optionally joined to form a fused ring or form a multidentate ligand.

In one aspect, the first device is a consumer product. In one aspect, the first device is an organic light-emitting device. In one aspect, the first device comprises a lighting panel. In one aspect, a first device comprising an organic light emitting device, further comprising an anode, a cathode, a first organic layer disposed between the anode and the cathode, and wherein the first organic layer comprises a compound of formula:

$$Ar_1$$
 Ar_2
 R_2

$$R_1$$
 R_3
 R_4
 R_2

In the compound of Formula I, Ar₁ and Ar₂ are independently selected from the group consisting of aryl and heteroaryl, X is selected from the group consisting of O, S, and Se, R₁ and R₂ independently represent mono, di, tri, tetra substitution, or no substitution, and R₁, R₂, R₃ and R₄ are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and 30 combinations thereof.

In one aspect, the first organic layer is an emissive layer. In one aspect, the emissive layer is a phosphorescent emissive layer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an organic light emitting device.

FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

FIG. 3 shows a compound of Formula I.

DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer 45 disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices

·

based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.

19

FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.

More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped 25 hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, 35 which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electricallyconductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/ 0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.

FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be 55 fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

The simple layered structure illustrated in FIGS. 1 and 2 is $_{65}$ provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in

20

connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.

Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons,

may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The bather layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer 25 comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/ US2009/042829, which are herein incorporated by reference in their entireties. To be considered a "mixture", the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. 35 The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.

Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for 45 interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a tem- 55 perature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).

The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.

The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and

heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference.

In one embodiment, a compound having the formula I is provided:

Formula I

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_4
 R_2
 R_3

In the compound of Formula I, Ar_1 and Ar_2 are independently selected from the group consisting of aryl and heteroaryl, X is selected from the group consisting of O, S, and Se, R_1 and R_2 independently represent mono, di, tri, tetra substitution, or no substitution, and R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof.

In one embodiment, R_3 and R_4 are independently selected from the group consisting of alkyl, heteroalkyl, arylalkyl, aryl, and heteroaryl. In one embodiment, R_3 and R_4 are hydrogen or deuterium.

In one embodiment, the compound has the formula:

$$Ar_1$$
 R_3
 R_4
 R_1
 R_2
 R_2 or

-continued

$$Ar_1$$
 Ar_2
 Ar_3
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9

In one embodiment, \mathbf{A}_1 and \mathbf{Ar}_2 are independently selected from the group consisting of:

-continued

In one embodiment, Ar_1 and Ar_2 are independently selected from the group consisting of:

40

45

55

and

-continued

In one embodiment, ${\rm Ar_1}$ and ${\rm Ar_2}$ are independently selected $~^{15}$ from the group consisting of:

In one embodiment, X is O or S. In one embodiment, $\rm Ar_1^{-50}$ and $\rm Ar_2$ are aryl.

In one embodiment, the compound is selected from the group consisting of:

Compound 10

Compound 9

Compound 20

-continued

Compound 182

20

50

In some embodiments, the compounds are selected from the group consisting of Compound 1-Compound 1183 as depicted in Table 1. The list of substituents in Table 1 is as follows:

10

20

30

Ar_x-4 25

Ar_x-3 15

 Ar_x -2

31 -continued

Ar_x-5

Ar_x-5 40Ar_x-6

-continued

Ar_x-8

$$Ar_{\chi}$$
-9

$$Ar_{\chi}$$
-10

The subscript "x" in Ar_x depends on whether the group is Ar_1 , Ar_2 , or Ar_5 .

May									Ar ₅							_
Mg-1	Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9					Compound
Age			x													
African				х	х											
My-1						x										4
Might Migh							X									
Mary								х	x							
My-1										x						8
Ary1 Ary1 Ary1 Ary1 Ary1 Ary1 Ary1 Ary1 Ary1 Ary2 x 113 Ary1 Ary2 x 134 x 134 Ary1 Ary2 x 113 x 114 Ary1 Ary2 x 115 x 116 Ary1 Ary2 x x 116 x 116 Ary1 Ary2 x x 117 x 116 Ary1 Ary2 x x x 117 x 116 Ary1 Ary2 x x x x 21 x 116 x x 116 x 117 x 116 x 117 x 116 x 116 x 116 x 117 x 117 x 116 x 117 x 117 x 117 x 117 x 117 x											x					
Airy1 Airy1 Airy1 Airy1 Airy1 Airy1 Airy1 Airy2 x 114 Airy1 Airy2 x 144 Airy1 Airy2 x 144 Airy1 Airy2 x x 116 Airy1 Airy2 x 116 Airy1 Airy2 x x x 117 Airy1 Airy2 x 118 Airy1 Airy2 x x x x 200 118 Airy1 Airy2 x x x x 222 211 Airy1 Airy2 x x x x 222 211 Airy1 Airy2 x x x x 222 223 Airy1 Airy2 x x x x x 224 Airy1 Airy3 x x x x x 224 Airy1 Airy3 x												х	x			
Auy 1 Aby 2 x x 14 15 14 15 15 15 15 16 16 16 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 19 19 11 18 19 19 11 18 19 19 11 18 19 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>x</td><td></td><td></td></td<>														x		
Arj- Arj-															x	
Ary Ary			Х	x												
Arr Arg Arg					x											
AT AT 2						X										
AT AT AT AT							X	x								
Arr Ary Ary								74	x							
Arr Ary Ary										x						
Afr -1 Afr -2 Afr -2											X	x				
AT ₁ -1 AT ₂ -2												1	x			
Arj-1														X		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			x												X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				x												28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ar ₁ -1				X											
Ar_1						X	x									
Ar_1								X								
Ar ₁ -1 Ar ₂ -3 x 35 Ar ₁ -1 Ar ₂ -3 x 36 Ar ₁ -1 Ar ₂ -3 x 37 Ar ₁ -1 Ar ₂ -3 x 38 Ar ₁ -1 Ar ₂ -3 x 39 Ar ₁ -1 Ar ₂ -4 x 40 Ar ₁ -1 Ar ₂ -4 x 41 Ar ₁ -1 Ar ₂ -4 x 41 Ar ₁ -1 Ar ₂ -4 x 42 Ar ₁ -1 Ar ₂ -4 x 42 Ar ₁ -1 Ar ₂ -4 x x	Ar ₁ -1	Ar_2-3							X							
Ary-1 Ary-3 Ary-1 Ary-3 X 36 Ary-1 Ary-3 X 37 Ary-3 X 38 Ary-1 Ary-3 X 38 Ary-1 Ary-4 X 39 Ary-1 Ary-4 X 40 40 41 41 Ary-1 Ary-4 X 41 41 41 Ary-1 Ary-4 X X 42 41 Ary-1 Ary-4 X X 42 43 Ary-1 Ary-4 X X 43 43 Ary-1 Ary-4 X X X 44 Ary-1 Ary-4 X X X 45 Ary-1 Ary-4 X X X 47 Ary-1 Ary-4 X X X 49 Ary-1 Ary-4 X X X 50 Ary-1 Ary-4 X										х	x					
Ar ₁ -1 Ar ₂ -3 x 38 Ar ₁ -1 Ar ₂ -4 x 40 Ar ₁ -1 Ar ₂ -4 x 40 Ar ₁ -1 Ar ₂ -4 x 41 Ar ₁ -1 Ar ₂ -4 x 42 Ar ₁ -1 Ar ₂ -4 x 43 Ar ₁ -1 Ar ₂ -4 x 44 Ar ₁ -1 Ar ₂ -4 x 44 Ar ₁ -1 Ar ₂ -4 x 44 Ar ₁ -1 Ar ₂ -4 x 45 Ar ₁ -1 Ar ₂ -4 x x Ar ₁ -1 Ar ₂ -5 x x Ar ₁ -1 Ar ₂ -5 x x											Λ	x				
Ar ₁ -1 Ar ₂ -3 x 40 Ar ₁ -1 Ar ₂ -4 x 41 Ar ₁ -1 Ar ₂ -4 x 41 Ar ₁ -1 Ar ₂ -4 x 42 Ar ₁ -1 Ar ₂ -4 x 42 Ar ₁ -1 Ar ₂ -4 x 43 Ar ₁ -1 Ar ₂ -4 x 44 Ar ₁ -1 Ar ₂ -4 x x Ar ₁ -1 Ar ₂ -5 x x Ar ₁ -1 Ar ₂ -5 x x Ar ₁ -1 Ar ₂ -5 x x													X			
Ar ₁ -1 Ar ₂ -4 x 40 41 41 41 41 41 41 41 41 42 42 42 42 42 43 44 44 44 44 44 44 44 44 44 44 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47														х	x	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			x													
Ar ₁ -1 Ar ₂ -4 x 43 Ar ₁ -1 Ar ₂ -4 x 44 Ar ₁ -1 Ar ₂ -4 x 45 Ar ₁ -1 Ar ₂ -4 x x 46 Ar ₁ -1 Ar ₂ -4 x x 47 Ar ₁ -1 Ar ₂ -4 x x 49 Ar ₁ -1 Ar ₂ -4 x x 50 Ar ₁ -1 Ar ₂ -4 x x 50 Ar ₁ -1 Ar ₂ -4 x x 51 Ar ₁ -1 Ar ₂ -4 x x 51 Ar ₁ -1 Ar ₂ -4 x x 51 Ar ₁ -1 Ar ₂ -5 x x 51 Ar ₁ -1 Ar ₂ -5 x x 53 Ar ₁ -1 Ar ₂ -5 x x 55 Ar ₁ -1 Ar ₂ -5 x x x Ar ₁ -1 Ar ₂ -5 x x x Ar ₁ -1 Ar ₂ -5				X												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					х	x										
Ar ₁ -1 Ar ₂ -4 x 46 Ar ₁ -1 Ar ₂ -4 x 47 Ar ₁ -1 Ar ₂ -4 x 48 Ar ₁ -1 Ar ₂ -4 x 49 Ar ₁ -1 Ar ₂ -4 x 50 Ar ₁ -1 Ar ₂ -5 x x 52 Ar ₁ -1 Ar ₂ -5 x 53 53 Ar ₁ -1 Ar ₂ -5 x x 55 Ar ₁ -1 Ar ₂ -5 x x 56 Ar ₁ -1 Ar ₂ -5 x x 57 Ar ₁ -1 Ar ₂ -5 x x 59 Ar ₁ -1 Ar ₂ -5 x x x Ar ₁ -1 Ar ₂ -5 x x x Ar ₁ -1 A							x									
Ar ₁ -1 Ar ₂ -4 x 47 Ar ₁ -1 Ar ₂ -4 x 48 Ar ₁ -1 Ar ₂ -4 x 49 Ar ₁ -1 Ar ₂ -4 x 50 Ar ₁ -1 Ar ₂ -4 x 50 Ar ₁ -1 Ar ₂ -4 x 52 Ar ₁ -1 Ar ₂ -5 x 53 Ar ₁ -1 Ar ₂ -5 x 53 Ar ₁ -1 Ar ₂ -5 x 54 Ar ₁ -1 Ar ₂ -5 x 54 Ar ₁ -1 Ar ₂ -5 x x								X								
Ar ₁ -1 Ar ₂ -4 48 Ar ₁ -1 Ar ₂ -4 x 49 Ar ₁ -1 Ar ₂ -4 x 50 Ar ₁ -1 Ar ₂ -4 x 51 Ar ₁ -1 Ar ₂ -4 x 52 Ar ₁ -1 Ar ₂ -5 x 52 Ar ₁ -1 Ar ₂ -5 x 53 Ar ₁ -1 Ar ₂ -5 x 55 Ar ₁ -1 Ar ₂ -5 x 56 Ar ₁ -1 Ar ₂ -5 x x									х	x						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											x					48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												x				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -1 Ar ₁ -1	Ar ₂ -4 Ar ₂ -4											Х	x		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar_1-1	Ar_2-4													x	52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ar ₂ -5	X													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Х	х											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar_1-1	Ar ₂ -5				x										56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							X	37								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								А	x							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar_1-1	Ar ₂ -5								x						60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											X	v				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ar_2 -5										А	x			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -1	Ar ₂ -5												X		64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			v												X	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			^	x												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -1	Ar ₂ -6			x											68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						X	v									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							А	x								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -1	Ar ₂ -6							x							72
$Ar_1-1 Ar_2-6 x 75$										x	v					
											Λ.	x				
													x			

								A							
								Ar ₅							-
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -1	Ar ₂ -6												x		77
Ar ₁ -1 Ar ₁ -1	Ar ₂ -6 Ar ₂ -7	x												х	78 79
Ar ₁ -1	Ar ₂ -7		x												80
Ar ₁ -1 Ar ₁ -1	Ar ₂ -7 Ar ₂ -7			х	x										81 82
Ar_1-1	Ar ₂ -7					x									83
Ar ₁ -1 Ar ₁ -1	Ar ₂ -7 Ar ₂ -7						х	x							84 85
Ar ₁ -1	Ar_2 -7							Α	x						86
Ar ₁ -1 Ar ₁ -1	Ar ₂ -7 Ar ₂ -7									X	x				87 88
Ar_1-1	Ar_2-7										^	x			89
Ar ₁ -1	Ar ₂ -7												X		90 91
Ar ₁ -1 Ar ₁ -1	Ar ₂ -7 Ar ₂ -8	x												х	92
Ar ₁ -1	Ar ₂ -8		X	•											93 94
Ar ₁ -1 Ar ₁ -1	Ar ₂ -8 Ar ₂ -8			х	x										94 95
Ar ₁ -1	Ar ₂ -8					X									96
Ar ₁ -1 Ar ₁ -1	Ar ₂ -8 Ar ₂ -8						X	x							97 98
Ar ₁ -1	Ar ₂ -8								x						99
Ar ₁ -1 Ar ₁ -1	Ar ₂ -8 Ar ₂ -8									X	x				100 101
Ar ₁ -1	Ar ₂ -8											x			102
Ar ₁ -1 Ar ₁ -1	Ar ₂ -8 Ar ₂ -8												X	x	103 104
Ar ₁ -1	Ar ₂ -9	x												24	105
Ar ₁ -1 Ar ₁ -1	Ar ₂ -9 Ar ₂ -9		X	x											106 107
Ar_1 -1	Ar ₂ -9			^	x										108
Ar ₁ -1	Ar ₂ -9					x									109
Ar ₁ -1 Ar ₁ -1	Ar ₂ -9 Ar ₂ -9						X	х							110 111
Ar ₁ -1	Ar ₂ -9								x						112
Ar ₁ -1 Ar ₁ -1	Ar ₂ -9 Ar ₂ -9									х	x				113 114
Ar ₁ -1	$Ar_{2}^{-}-9$											x			115
Ar ₁ -1 Ar ₁ -1	Ar ₂ -9 Ar ₂ -9												X	x	116 117
Ar ₁ -1	Ar ₂ -	x													118
Ar ₁ -1	10 Ar ₂ -		x												119
2111	10		Α.												117
Ar ₁ -1	Ar ₂ -			x											120
Ar ₁ -1	10 Ar 2-				x										121
	10														
Ar ₁ -1	Ar ₂ - 10					X									122
Ar ₁ -1	Ar ₂ -						x								123
	10														104
Ar ₁ -1	Ar ₂ - 10							х							124
Ar ₁ -1	Ar_2 -								x						125
A 1	10														126
Ar ₁ -1	Ar ₂ - 10									Х					120
Ar_1-1	Ar ₂ -										x				127
Ar ₁ -1	10 Ar ₂ -											x			128
2111	10											Α			120
Ar_1 -1	Ar ₂ -												x		129
Ar ₁ -1	10 Ar 2-													x	130
	10													**	
Ar ₁ -1	Ar ₂ -	X													131
Ar ₁ -1	11 Ar ₂ -		x												132
	11														
Ar ₁ -1	Ar ₂ - 11			х											133
	1.1														

								Ar ₅							_
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -1	Ar ₂ -				x										134
Ar ₁ -1	11 Ar ₂ -					x									135
Ar ₁ -1	11 Ar ₂ -						x								136
Ar ₁ -1	11 Ar ₂ -							x							137
Ar ₁ -1	11 Ar ₂ -								x						138
Ar ₁ -1	11 Ar ₂ -									x					139
Ar ₁ -1	11 Ar ₂ -										x				140
Ar ₁ -1	11 Ar ₂ -											x			141
Ar ₁ -1	11 Ar ₂ -												x		142
Ar ₁ -1	11 Ar ₂ -													x	143
Ar ₁ -1	11 Ar ₂ -	x													144
Ar ₁ -1	12 Ar ₂ -		x												145
Ar ₁ -1	12 Ar ₂ -			x											146
Ar ₁ -1	12 Ar ₂ -				x										147
Ar ₁ -1	12 Ar ₂ -					x									148
Ar ₁ -1	12 Ar ₂ -						x								149
Ar ₁ -1	12 Ar ₂ -							x							150
Ar ₁ -1	12 Ar ₂ -								x						151
Ar ₁ -1	12 Ar ₂ -									x					152
Ar ₁ -1	12 Ar ₂ -										x				153
Ar ₁ -1	12 Ar ₂ - 12											x			154
Ar ₁ -1	Ar ₂ -												x		155
Ar_1-1	12 Ar ₂ -													x	156
Ar ₁ -1	12 Ar ₂ -	x													157
Ar ₁ -1	13 Ar ₂ -		x												158
Ar ₁ -1	13 Ar ₂ - 13			x											159
Ar ₁ -1	Ar ₂ -				x										160
Ar ₁ -1	13 Ar ₂ - 13					x									161
Ar ₁ -1	Ar ₂ -						x								162
Ar ₁ -1	Ar_2 -							x							163
Ar ₁ -1	13 Ar ₂ -								x						164
Ar ₁ -1	13 Ar ₂ -									x					165
Ar ₁ -1	13 Ar ₂ -										x				166
Ar ₁ -1	13 Ar ₂ -											x			167
Ar ₁ -1	13 Ar ₂ -												x		168
Ar ₁ -1	13 Ar ₂ -													x	169
Ar ₁ -2	13 Ar ₂ -2	x												21	170
Ar_1-2 Ar_1-2	Ar_2 -2 Ar_2 -2	Х	x												170

							-co	ntinue	ed						
								Ar ₅							
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6		Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ -	Compound
Ar ₁ -2	Ar ₂ -2			x											172
Ar ₁ -2	Ar ₂ -2				х										173 174
Ar ₁ -2 Ar ₁ -2	Ar ₂ -2 Ar ₂ -2					х	x								175
Ar ₁ -2	Ar_2-2							x							176
Ar ₁ -2	Ar ₂ -2								Х						177
Ar ₁ -2 Ar ₁ -2	Ar ₂ -2 Ar ₂ -2									X	x				178 179
Ar ₁ -2	Ar_2-2											x			180
Ar ₁ -2	Ar ₂ -2												X		181
Ar ₁ -2 Ar ₁ -2	Ar ₂ -2 Ar ₂ -3	x												X	182 183
Ar ₁ -2	Ar_2-3		x												184
Ar ₁ -2	Ar ₂ -3			X											185
Ar ₁ -2 Ar ₁ -2	Ar ₂ -3 Ar ₂ -3				Х	x									186 187
Ar_1-2	Ar_2-3						x								188
Ar ₁ -2	Ar ₂ -3							X							189
Ar ₁ -2 Ar ₁ -2	Ar ₂ -3 Ar ₂ -3								X	x					190 191
Ar_1-2	Ar_2 -3									••	x				192
Ar_1-2	Ar_2-3											X			193
Ar ₁ -2 Ar ₁ -2	Ar ₂ -3 Ar ₂ -3												X	x	194 195
Ar_1-2	Ar_2-4	x													196
Ar_1-2	Ar ₂ -4		X												197
Ar ₁ -2 Ar ₁ -2	Ar ₂ -4 Ar ₂ -4			X	x										198 199
Ar ₁ -2	Ar_2-4					x									200
Ar_1-2	Ar ₂ -4						X								201
Ar ₁ -2 Ar ₁ -2	Ar ₂ -4 Ar ₂ -4							X	x						202 203
Ar ₁ -2	Ar_2-4									x					204
Ar_1-2	Ar ₂ -4										X				205
Ar ₁ -2 Ar ₁ -2	Ar ₂ -4 Ar ₂ -4											Х	x		206 207
Ar ₁ -2	Ar ₂ -4												Α.	x	208
Ar ₁ -2	Ar ₂ -5	X													209
Ar ₁ -2 Ar ₁ -2	Ar ₂ -5 Ar ₂ -5		х	x											210 211
Ar ₁ -2	Ar_2 -5				x										212
Ar_1-2	Ar ₂ -5					X									213
Ar ₁ -2 Ar ₁ -2	Ar ₂ -5 Ar ₂ -5						х	x							214 215
Ar ₁ -2	Ar_2-5								x						216
Ar ₁ -2	Ar ₂ -5									X					217
Ar ₁ -2 Ar ₁ -2	Ar ₂ -5 Ar ₂ -5										х	x			218 219
Ar ₁ -2	Ar ₂ -5												x		220
Ar ₁ -2	Ar ₂ -5													X	221 222
Ar ₁ -2 Ar ₁ -2	Ar ₂ -6 Ar ₂ -6	х	x												223
Ar_1-2	Ar ₂ -6			x											224
Ar ₁ -2	Ar ₂ -6				X	x									225 226
Ar ₁ -2 Ar ₁ -2	Ar ₂ -6 Ar ₂ -6					Λ	x								227
Ar ₁ -2	Ar ₂ -6							x							228
Ar ₁ -2 Ar ₁ -2	Ar ₂ -6 Ar ₂ -6								X	x					229 230
Ar_1-2	Ar_2 -6									Λ	x				231
Ar ₁ -2	Ar ₂ -6											x			232
Ar ₁ -2	Ar ₂ -6												x		233
Ar ₁ -2 Ar ₁ -2	Ar ₂ -6 Ar ₂ -7	v												X	234 235
Ar_1 -2 Ar_1 -2	Ar_2 -7	Х	х												236
Ar ₁ -2	Ar_{2}^{2} -7			x											237
Ar_1-2	Ar ₂ -7				x										238
Ar ₁ -2 Ar ₁ -2	Ar ₂ -7 Ar ₂ -7					X	x								239 240
Ar_1 -2 Ar_1 -2	Ar_2 -7						^	x							240
Ar ₁ -2	Ar_2 -7								x						242
Ar ₁ -2	Ar ₂ -7									x					243
Ar2	Ar ₂ -7 Ar ₂ -7										х	v			244 245
Ar ₁ -2	.π2=/											X			∆ 4 3

							-co	ntınue	ea .						
								Ar ₅							-
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -2	Ar ₂ -7												x		246
Ar ₁ -2 Ar ₁ -2	Ar ₂ -7 Ar ₂ -8	x												X	247 248
Ar ₁ -2	Ar_2 -8		x												249
Ar ₁ -2 Ar ₁ -2	Ar ₂ -8 Ar ₂ -8			X	x										250 251
Ar_1-2	Ar ₂ -8				^	x									252
Ar ₁ -2	Ar_2 -8						x								253
Ar ₁ -2 Ar ₁ -2	Ar ₂ -8 Ar ₂ -8							х	x						254 255
Ar ₁ -2	Ar_2 -8									x					256
Ar ₁ -2 Ar ₁ -2	Ar ₂ -8 Ar ₂ -8										х	x			257 258
Ar ₁ -2	Ar ₂ -8												x		259
Ar ₁ -2	Ar ₂ -8													X	260 261
Ar ₁ -2 Ar ₁ -2	Ar ₂ -9 Ar ₂ -9	х	x												262
Ar_1-2	Ar ₂ -9			X											263
Ar ₁ -2 Ar ₁ -2	Ar ₂ -9 Ar ₂ -9				Х	x									264 265
Ar ₁ -2	Ar ₂ -9						x								266
Ar ₁ -2 Ar ₁ -2	Ar ₂ -9 Ar ₂ -9							X	x						267 268
Ar_1-2	Ar ₂ -9								Λ.	x					269
Ar ₁ -2	Ar ₂ -9										X				270
Ar ₁ -2 Ar ₁ -2	Ar ₂ -9 Ar ₂ -9											X	x		271 272
Ar ₁ -2	Ar ₂ -9													x	273
Ar ₁ -2	Ar ₂ - 10	x													274
Ar ₁ -2	Ar ₂ -		x												275
Ar ₁ -2	Ar ₂ - 10			X											276
Ar ₁ -2	Ar ₂ - 10				x										277
Ar ₁ -2	Ar ₂ - 10					x									278
Ar ₁ -2	Ar ₂ - 10						х								279
Ar ₁ -2	Ar ₂ - 10 Ar ₂ -							х	x						280 281
Ar ₁ -2	10 Ar ₂ -									x					282
Ar ₁ -2	10 Ar ₂ -										x				283
Ar ₁ -2	10 Ar ₂ -											x			284
Ar ₁ -2	10 A r ₂ - 10												x		285
Ar ₁ -2	Ar ₂ - 10													х	286
Ar ₁ -2	Ar ₂ - 11	х													287
Ar ₁ -2 Ar ₁ -2	Ar ₂ - 11 Ar ₂ -		х	x											288 289
Ar ₁ -2	11 Ar ₂ -			А	x										290
Ar ₁ -2	11 Ar ₂ -					x									291
Ar ₁ -2	11 Ar ₂ -						x								292
Ar ₁ -2	11 Ar ₂ -							x							293
Ar ₁ -2	11 Ar ₂ -								x						294
Ar ₁ -2	11 Ar ₂ -									x					295
Ar ₁ -2	11 Ar ₂ - 11										x				296
	11														

Ary									Ar ₅							_
Total Tota	Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12		Compound
Arg 10 10 10 10 10 10 10 1	Ar ₁ -2												х			297
Air 1 Air 2 Air 3 Air 2 Air 3 Air 2 Air 3 Air 4 Air 5 Air 4 Air 5 Air 4 Air 5 Air 4 Air 5 Air 5 <td< td=""><td>Ar₁-2</td><td>Ar₂-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>x</td><td></td><td>298</td></td<>	Ar ₁ -2	Ar ₂ -												x		298
1	Ar ₁ -2														x	299
Ary 2 Ary 3 x 301 302 302 302 302 302 302 303 </td <td>Ar₁-2</td> <td>Ar₂-</td> <td>x</td> <td></td> <td>300</td>	Ar ₁ -2	Ar ₂ -	x													300
Arg - 2 Arg - 12 x 302 303	Ar ₁ -2			x												301
Ar 12	Ar ₁ -2				x											302
12	Ar ₁ -2	12 Ar ₂ -				x										303
12		12					x									304
Table Tabl		12						x								305
Table Tabl		12							x							306
Table Tabl		12								x						
The color of the		12									x					
Ar ₁ -2 Ar ₂ Ar ₂ Ar ₃ Ar ₄ Ar ₅ Ar ₄ Ar ₅ Ar ₅ Ar ₄ Ar ₅ Ar ₅		12										x				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12											x			
Ar ₁ -2 Ar ₂ - x 312 Ar ₁ -2 Ar ₂ - x 313 Ar ₁ -2 Ar ₂ - x 314 13 x 314 Ar ₁ -2 Ar ₂ - x 315 13 x 316 Ar ₁ -2 Ar ₂ - x 316 13 x 316 Ar ₁ -2 Ar ₂ - x 317 13 x 317 318 Ar ₁ -2 Ar ₂ - x 317 13 x 317 318 Ar ₁ -2 Ar ₂ - x 318 13 x 319 318 13 x 319 318 13 x 319 318 13 x x 320 34r ₁ -2 Ar ₂ - x 320 34r ₁ -2 Ar ₂ - x 321 34r ₁ -2 Ar ₂ - x x 322 34r ₁ -2 Ar ₂ - x x 323 34r ₁ -2		12											••	v		
Ar ₁ -2 Ar ₂ x x 313 Ar ₁ -2 Ar ₂ x x 314 Ar ₁ -2 Ar ₂ x x 315 Ar ₁ -2 Ar ₂ x x 316 Ar ₁ -2 Ar ₂ x x 317 Ar ₁ -2 Ar ₂ x x 318 Ar ₁ -2 Ar ₂ x x 318 Ar ₁ -2 Ar ₂ x x 318 Ar ₁ -2 Ar ₂ x x 320 Ar ₁ -2 Ar ₂ x x 320 Ar ₁ -2 Ar ₂ x x 320 Ar ₁ -2 Ar ₂ x x 321 Ar ₁ -2 Ar ₂ x x 322 Ar ₁ -2 Ar ₂ x x 323 Ar ₁ -2 Ar ₂ x x 323 Ar ₁ -3 Ar ₂ x x 324 Ar ₁ -3 Ar ₂ x x 325 Ar ₁ -3 Ar ₂ x x 326 Ar ₁ -3 Ar ₂ x x 327 Ar ₁ -3 Ar ₂ x x 328 Ar ₁ -3 Ar ₂ x x 329 Ar ₁ -3 Ar ₂ x x x 339 Ar ₁ -3 Ar ₂ x x x 339 Ar ₁ -3 Ar ₂ x x x 339 Ar ₁ -3 Ar ₂ x x x 339 Ar ₁ -3 Ar ₂ x x x 339 Ar ₁ -3 Ar ₂ x x x 339 Ar ₁ -3 Ar ₂ x x x x 339 Ar ₁ -3 Ar ₂ x x x x 339 Ar ₁ -3 Ar ₂ x x x x 339 Ar ₁ -3 Ar ₂ x x x x 339	_	12												•	v	
Ar ₁ -2 Ar ₂ -		12	v												Α.	
Ar ₁ -2 Ar ₂ -		13	A	v												
Ar ₁ -2 Ar ₂ Ar ₂ Ar ₂ X X		13		Λ	v											
Table Tabl		13			^	v										
Ar ₁ -2 Ar ₂ Ar ₂		13				Λ.	v									
Ar ₁ -2		13					Λ.	.,								
Ar ₁ -2 Ar ₂ Ar ₂		13						х	•							
Ar ₁ -2 Ar ₂		13							Х							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13								Х						
Ar ₁ -2 Ar ₂ -		13									х					
Ar ₁ -2 Ar ₂ -		13										Х				
13 Ar ₁ -2		13											Х			
13 Ar ₁ -3 Ar ₂ -3 x 327 Ar ₁ -3 Ar ₂ -3 x Ar ₁ -3 Ar ₂ -3 x Ar ₁ -3 Ar ₂ -3 x 329 Ar ₁ -3 Ar ₂ -3 329 Ar ₁ -3 Ar ₂ -3 x 330 Ar ₁ -3 Ar ₂ -3 x 331 Ar ₁ -3 Ar ₂ -3 x 332 Ar ₁ -3 Ar ₂ -3 x 333 Ar ₁ -3 Ar ₂ -3 x 334 Ar ₁ -3 Ar ₂ -3 x 335 Ar ₁ -3 Ar ₂ -3 x 336 Ar ₁ -3 Ar ₂ -3 x 336 Ar ₁ -3 Ar ₂ -3 x 337 Ar ₁ -3 Ar ₂ -3 x 338 Ar ₁ -3 Ar ₂ -4 x 339 Ar ₁ -3 Ar ₂ -4 x 340		13												Х		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		13													х	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -3	Ar ₂ -3	X	x												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -3	Ar ₂ -3			X	.,										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ar ₂ -3				Х	x									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-1	x								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -3	$Ar_{2}-3$							x							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar_1-3	Ar ₂ -3								x						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -3										X					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -3	Ar ₂ -3										X				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													X			
Ar_{1} -3 Ar_{2} -4 x 339 Ar_{1} -3 Ar_{2} -4 x 340														X	***	
$Ar_1-3 Ar_2-4 x 340$			v												Х	
Ar3 Ar4 v	Ar ₁ -3		Λ.	x												
7H1 - 7H1 - 7	Ar_1-3	Ar_2-4			x											341

								A =							
								Ar ₅			Ar ₅ -	Ar ₅ -	Ar ₅ -	Ar ₅ -	
$\frac{Ar_1}{}$	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	10	11	12	13	Compound
Ar ₁ -3	Ar ₂ -4				x										342 343
Ar ₁ -3 Ar ₁ -3	Ar ₂ -4 Ar ₂ -4					х	х								343 344
Ar ₁ -3	Ar ₂ -4							x							345
Ar ₁ -3 Ar ₁ -3	Ar ₂ -4								X	x					346 347
Ar_1 -3	Ar ₂ -4 Ar ₂ -4									Λ.	x				348
Ar ₁ -3	Ar ₂ -4											x			349
Ar ₁ -3 Ar ₁ -3	Ar ₂ -4 Ar ₂ -4												X	x	350 351
Ar_1 -3	Ar_2 -5	x												Α	352
Ar_1-3	Ar ₂ -5		x												353
Ar ₁ -3 Ar ₁ -3	Ar ₂ -5 Ar ₂ -5			Х	x										354 355
Ar_1-3	Ar ₂ -5					x									356
Ar_1-3	Ar ₂ -5						x								357
Ar ₁ -3 Ar ₁ -3	Ar ₂ -5 Ar ₂ -5							X	x						358 359
Ar_1-3	Ar ₂ -5									X					360
Ar ₁ -3	Ar ₂ -5										X	**			361
Ar ₁ -3 Ar ₁ -3	Ar ₂ -5 Ar ₂ -5											X	x		362 363
Ar_1-3	Ar_2 -5													x	364
Ar ₁ -3	Ar ₂ -6	X													365
Ar ₁ -3 Ar ₁ -3	Ar ₂ -6 Ar ₂ -6		X	x											366 367
Ar ₁ -3	Ar ₂ -6				x										368
Ar ₁ -3	Ar ₂ -6					X	x								369 370
Ar ₁ -3 Ar ₁ -3	Ar ₂ -6 Ar ₂ -6						Λ.	x							371
Ar ₁ -3	Ar ₂ -6								x						372
Ar ₁ -3 Ar ₁ -3	Ar ₂ -6 Ar ₂ -6									Х	x				373 374
Ar_1-3	Ar ₂ -6											x			375
Ar ₁ -3	Ar ₂ -6												x		376
Ar ₁ -3 Ar ₁ -3	Ar ₂ -6 Ar ₂ -7	x												X	377 378
Ar_1-3	Ar_2 -7		x												379
Ar ₁ -3	Ar ₂ -7			x											380
Ar ₁ -3 Ar ₁ -3	Ar ₂ -7 Ar ₂ -7				х	x									381 382
Ar ₁ -3	Ar ₂ -7						x								383
Ar ₁ -3 Ar ₁ -3	Ar ₂ -7 Ar ₂ -7							X	x						384 385
Ar_1-3	Ar_2-7								^	x					386
Ar ₁ -3	Ar ₂ -7										x				387
Ar ₁ -3 Ar ₁ -3	Ar ₂ -7 Ar ₂ -7											X	x		388 389
Ar_1-3	Ar_2-7													x	390
Ar ₁ -3	Ar ₂ -8	X													391
Ar ₁ -3 Ar ₁ -3	Ar ₂ -8 Ar ₂ -8		X	x											392 393
Ar ₁ -3	Ar_2 -8				x										394
Ar_1-3	Ar ₂ -8					X									395
Ar ₁ -3 Ar ₁ -3	Ar ₂ -8 Ar ₂ -8						X	x							396 397
Ar_1-3	Ar_2 -8								x						398
Ar ₁ -3	Ar ₂ -8									X					399
Ar ₁ -3 Ar ₁ -3	Ar ₂ -8 Ar ₂ -8										X	x			400 401
Ar ₁ -3	Ar_2^2 -8												x		402
Ar ₁ -3	Ar ₂ -8													x	403
Ar ₁ -3 Ar ₁ -3	Ar ₂ -9 Ar ₂ -9	X	x												404 405
Ar_1-3	Ar ₂ -9		Λ	x											406
Ar ₁ -3	Ar ₂ -9				x										407
Ar ₁ -3	Ar ₂ -9					X									408
Ar ₁ -3 Ar ₁ -3	Ar ₂ -9 Ar ₂ -9						х	x							409 410
Ar_1-3	Ar ₂ -9							Λ	x						411
Ar_1-3	Ar ₂ -9									x					412
Ar ₁ -3	Ar ₂ -9										x				413
Ar ₁ -3 Ar ₁ -3	Ar ₂ -9 Ar ₂ -9											х	x		414 415
	2 -														

								Ar ₅							_
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -3 Ar ₁ -3	Ar ₂ -9 Ar ₂ -	х												x	416 417
Ar ₁ -3	10 Ar ₂ -		x												418
Ar ₁ -3	10 Ar ₂ -			x											419
Ar ₁ -3	10 Ar ₂ -				x										420
Ar ₁ -3	10 Ar ₂ -					x									421
Ar ₁ -3	10 Ar ₂ -						x								422
Ar ₁ -3	10 Ar ₂ - 10							x							423
Ar ₁ -3	Ar ₂ -								x						424
Ar ₁ -3	Ar ₂ -									x					425
Ar ₁ -3	Ar ₂ -										x				426
Ar ₁ -3	Ar ₂ -											x			427
Ar ₁ -3	Ar ₂ -												x		428
Ar ₁ -3	Ar ₂ -													x	429
Ar ₁ -3	Ar ₂ -	x													430
Ar ₁ -3	Ar ₂ - 11		X												431
Ar ₁ -3	Ar ₂ -			x											432
Ar ₁ -3	Ar ₂ - 11				x										433
Ar ₁ -3	Ar ₂ - 11					x									434
Ar ₁ -3	Ar ₂ - 11						x								435
Ar ₁ -3	Ar ₂ -							x							436
Ar ₁ -3	Ar ₂ - 11								x						437
Ar ₁ -3	Ar ₂ -									X					438
Ar ₁ -3	Ar ₂ - 11										x				439
Ar ₁ -3	Ar ₂ -											x			440
Ar ₁ -3	11 Ar ₂ -												x		441
Ar ₁ -3	11 Ar ₂ -													x	442
Ar ₁ -3	11 A r ₂ -	x													443
Ar ₁ -3	12 Ar ₂ -		x												444
Ar ₁ -3	12 Ar ₂ -			х											445
Ar ₁ -3	12 Ar ₂ -				x										446
Ar ₁ -3	12 Ar ₂ -					x									447
Ar ₁ -3	12 Ar ₂ -					••	x								448
	12						^	**							
Ar ₁ -3	Ar ₂ - 12							X							449
Ar ₁ -3	Ar ₂ - 12								Х						450
Ar ₁ -3	Ar ₂ - 12									X					451
Ar ₁ -3	Ar ₂ - 12										x				452

49		50
	-continued	

							-co	ntınue	ea						
								Ar ₅							-
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -3	Ar ₂ -											х			453
Ar ₁ -3	12 Ar ₂ -												x		454
Ar ₁ -3	12 Ar ₂ -													x	455
	12														
Ar ₁ -3	Ar ₂ - 13	х													456
Ar ₁ -3	Ar ₂ - 13		х												457
Ar ₁ -3	Ar ₂ - 13			x											458
Ar ₁ -3	Ar ₂ - 13				x										459
Ar ₁ -3	Ar ₂ -					x									460
Ar ₁ -3	13 Ar ₂ -						x								461
Ar ₁ -3	13 Ar ₂ -							x							462
Ar ₁ -3	13 Ar ₂ -								x						463
	13								Α.						
Ar ₁ -3	Ar ₂ - 13									Х					464
Ar ₁ -3	Ar ₂ - 13										X				465
Ar ₁ -3	Ar ₂ - 13											x			466
Ar ₁ -3	Ar_2 -												x		467
Ar ₁ -3	13 Ar ₂ -													x	468
Ar ₁ -4	13 Ar ₂ -4	х													469
Ar ₁ -4	Ar_2-4		x												470
Ar ₁ -4 Ar ₁ -4	Ar ₂ -4 Ar ₂ -4			X	x										471 472
Ar_1-4	Ar_2-4				Λ	x									473
Ar ₁ -4	Ar ₂ -4						x								474
Ar ₁ -4	Ar ₂ -4							X							475
Ar ₁ -4 Ar ₁ -4	Ar ₂ -4 Ar ₂ -4								X	x					476 477
Ar ₁ -4	Ar_2-4										x				478
Ar ₁ -4	Ar ₂ -4											x			479
Ar ₁ -4 Ar ₁ -4	Ar ₂ -4 Ar ₂ -4												X	x	480 481
Ar_1-4	Ar_2 -5	х												Λ	482
Ar ₁ -4	Ar ₂ -5		x												483
Ar ₁ -4	Ar ₂ -5			X											484
Ar ₁ -4 Ar ₁ -4	Ar ₂ -5 Ar ₂ -5				X	x									485 486
Ar ₁ -4	Ar_2-5					**	x								487
Ar_1-4	Ar ₂ -5							X							488
Ar ₁ -4 Ar ₁ -4	Ar ₂ -5 Ar ₂ -5								X	x					489 490
Ar_1-4	Ar_2 -5									^	x				491
Ar_1-4	Ar ₂ -5											X			492
Ar ₁ -4	Ar ₂ -5												X	•	493
Ar ₁ -4 Ar ₁ -4	Ar ₂ -5 Ar ₂ -6	x												X	494 495
Ar ₁ -4	Ar ₂ -6	••	x												496
Ar_1-4	Ar ₂ -6			x											497
Ar ₁ -4	Ar ₂ -6				X										498
Ar ₁ -4 Ar ₁ -4	Ar ₂ -6 Ar ₂ -6					X	x								499 500
Ar ₁ -4	Ar ₂ -6						71	x							501
Ar ₁ -4	Ar ₂ -6								x						502
Ar ₁ -4	Ar ₂ -6									X					503
Ar ₁ -4 Ar ₁ -4	Ar ₂ -6										X	v			504 505
Ar ₁ -4 Ar ₁ -4	Ar ₂ -6 Ar ₂ -6											х	x		506
Ar ₁ -4	Ar ₂ -6													x	507
Ar ₁ -4	Ar ₂ -7	x													508
Ar ₁ -4	Ar ₂ -7		x	**											509 510
Ar ₁ -4	Ar ₂ -7			X											510

							-co	ntınue	ea						
								Ar ₅							
Ar_1	Ar_2	Ar _s -1	Ar ₅ -2	Ar ₅ -3	Ars-4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -4	Ar ₂ -7		, .		x	<i>J</i> -	, .			<u> </u>					511
Ar_1-4	Ar_2 -7				Λ.	x									512
Ar ₁ -4	Ar ₂ -7						X								513
Ar ₁ -4	Ar ₂ -7							X							514 515
Ar ₁ -4 Ar ₁ -4	Ar ₂ -7 Ar ₂ -7								Х	x					515 516
Ar_1-4	Ar_2 -7									**	x				517
Ar ₁ -4	Ar ₂ -7											X			518
Ar ₁ -4	Ar ₂ -7												X		519
Ar ₁ -4 Ar ₁ -4	Ar ₂ -7 Ar ₂ -8	x												X	520 521
Ar_1-4	Ar ₂ -8	Λ	x												522
Ar ₁ -4	Ar ₂ -8			x											523
Ar ₁ -4	Ar ₂ -8				X										524
Ar ₁ -4 Ar ₁ -4	Ar ₂ -8 Ar ₂ -8					х	x								525 526
Ar_1-4	Ar ₂ -8						Λ	x							527
Ar ₁ -4	Ar_2^2 -8								X						528
Ar ₁ -4	Ar ₂ -8									x					529
Ar ₁ -4 Ar ₁ -4	Ar ₂ -8										X	**			530 531
Ar_1-4	Ar ₂ -8 Ar ₂ -8											X	x		532
Ar_1-4	Ar ₂ -8													x	533
Ar ₁ -4	Ar ₂ -9	X													534
Ar ₁ -4	Ar ₂ -9		X												535
Ar ₁ -4 Ar ₁ -4	Ar ₂ -9 Ar ₂ -9			X	x										536 537
Ar_1-4	Ar ₂ -9				Α.	X									538
Ar ₁ -4	Ar ₂ -9						X								539
Ar ₁ -4	Ar ₂ -9							X							540
Ar ₁ -4 Ar ₁ -4	Ar ₂ -9 Ar ₂ -9								X	x					541 542
Ar_1-4	Ar_2-9									А	x				543
Ar ₁ -4	Ar_2^2 -9											X			544
Ar ₁ -4	Ar ₂ -9												X		545
Ar ₁ -4 Ar ₁ -4	Ar ₂ -9 Ar ₂ -	x												X	546 547
241-4	10	^													547
Ar ₁ -4	Ar ₂ -		x												548
Ar ₁ -4	10 Ar ₂ -			x											549
211 -	10			Α											5-15
Ar_1-4	Ar ₂ -				x										550
	10														551
Ar ₁ -4	Ar ₂ - 10					X									551
Ar ₁ -4	Ar ₂ -						x								552
•	10														
Ar ₁ -4	Ar ₂ -							Х							553
Ar ₁ -4	10 Ar ₂ -								x						554
A11-4	10								^						337
Ar ₁ -4	Ar ₂ -									x					555
	10														
Ar ₁ -4	Ar ₂ - 10										X				556
Ar ₁ -4	Ar ₂ -											x			557
1	10														
Ar ₁ -4	Ar ₂ -												X		558
	10														550
Ar ₁ -4	Ar ₂ - 10													X	559
Ar ₁ -4	Ar ₂ -	x													560
, n .	11														300
Ar ₁ -4	Ar ₂ -		x												561
	11														
Ar ₁ -4	Ar ₂ -			x											562
A 4	11														5.00
Ar ₁ -4	Ar ₂ -				X										563
Ar ₁ -4	11 Ar ₂ -					x									564
2 to 1 To	11					Λ									207
Ar ₁ -4	Ar_2 -						x								565
	11														

-continued

								Ar ₅							
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -4	Ar ₂ - 11							x							566
Ar ₁ -4	Ar ₂ -								x						567
Ar ₁ -4	11 A r ₂ - 11									x					568
Ar ₁ -4	Ar ₂ -										x				569
Ar ₁ -4	11 Ar ₂ -											x			570
Ar ₁ -4	11 Ar ₂ -												x		571
Ar ₁ -4	11 Ar ₂ -													x	572
Ar ₁ -4	11 Ar ₂ -	x													573
Ar ₁ -4	12 Ar ₂ -		x												574
Ar ₁ -4	12 Ar ₂ -			x											575
Ar ₁ -4	12 Ar ₂ -				x										576
Ar ₁ -4	12 Ar ₂ -					x									577
Ar ₁ -4	12 Ar ₂ -						x								578
Ar ₁ -4	12 Ar ₂ -							x							579
Ar ₁ -4	12 Ar ₂ -								x						580
Ar ₁ -4	12 Ar ₂ -									x					581
Ar ₁ -4	12 Ar ₂ -										x				582
Ar ₁ -4	12 Ar ₂ -											x			583
Ar ₁ -4	12 Ar ₂ -												x		584
Ar ₁ -4	12 Ar ₂ -													x	585
Ar ₁ -4	12 Ar ₂ -	x													586
Ar ₁ -4	13 Ar ₂ -		x												587
Ar ₁ -4	13 Ar ₂ -			x											588
Ar ₁ -4	13 Ar ₂ -				х										589
Ar ₁ -4	13 Ar ₂ -					x									590
Ar ₁ -4	13 Ar ₂ -						x								591
Ar ₁ -4	13 Ar ₂ -							x							592
Ar ₁ -4	13 Ar ₂ -								x						593
Ar ₁ -4	13 Ar ₂ -									x					594
Ar ₁ -4	13 Ar ₂ -										x				595
Ar ₁ -4	13 Ar ₂ -											x			596
Ar ₁ -4	13 Ar ₂ -												x		597
Ar ₁ -4	13 Ar ₂ -												••	x	598
	13													Λ	
Ar ₁ -5 Ar ₁ -5	Ar ₂ -5 Ar ₂ -5	х	x												599 600
Ar ₁ -5 Ar ₁ -5	Ar ₂ -5 Ar ₂ -5			х	x										601 602
Ar ₁ -5 Ar ₁ -5	Ar ₂ -5 Ar ₂ -5					X	x								603 604
Ar ₁ -5 Ar ₁ -5	Ar ₂ -5 Ar ₂ -5							x	x						605 606

								Ar ₅							
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6		Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	- Compound
Ar ₁ -5	Ar ₂ -5									x					607
Ar ₁ -5	Ar ₂ -5										x				608
Ar ₁ -5 Ar ₁ -5	Ar ₂ -5 Ar ₂ -5											x	x		609 610
Ar_1-5	Ar_2 -5												Λ.	x	611
Ar ₁ -5	Ar ₂ -6	X													612
Ar ₁ -5	Ar ₂ -6		x												613
Ar ₁ -5 Ar ₁ -5	Ar ₂ -6 Ar ₂ -6			х	x										614 615
Ar ₁ -5	Ar ₂ -6					x									616
Ar ₁ -5	Ar ₂ -6						X								617
Ar ₁ -5 Ar ₁ -5	Ar ₂ -6 Ar ₂ -6							х	x						618 619
Ar ₁ -5	Ar_2 -6									x					620
Ar ₁ -5	Ar ₂ -6										x				621
Ar ₁ -5 Ar ₁ -5	Ar ₂ -6 Ar ₂ -6											X	x		622 623
Ar_1-5	Ar_2 -6												Λ	x	624
Ar ₁ -5	Ar ₂ -7	X													625
Ar ₁ -5	Ar ₂ -7		X												626
Ar ₁ -5 Ar ₁ -5	Ar ₂ -7 Ar ₂ -7			X	x										627 628
Ar ₁ -5	Ar_2-7					x									629
Ar ₁ -5	Ar ₂ -7						X								630
Ar ₁ -5 Ar ₁ -5	Ar ₂ -7 Ar ₂ -7							X	x						631 632
Ar_1-5	Ar ₂ -7								Λ	X					633
Ar ₁ -5	Ar ₂ -7										X				634
Ar ₁ -5	Ar ₂ -7											X	v		635 636
Ar ₁ -5 Ar ₁ -5	Ar ₂ -7 Ar ₂ -7												X	x	637
Ar ₁ -5	Ar_2^2 -8	x													638
Ar ₁ -5	Ar ₂ -8		X												639
Ar ₁ -5 Ar ₁ -5	Ar ₂ -8 Ar ₂ -8			X	x										640 641
Ar_1-5	Ar ₂ -8				Α.	x									642
Ar ₁ -5	Ar ₂ -8						x								643
Ar ₁ -5 Ar ₁ -5	Ar ₂ -8 Ar ₂ -8							X	x						644 645
Ar_1-5	Ar ₂ -8								Λ.	x					646
Ar ₁ -5	Ar ₂ -8										x				647
Ar ₁ -5	Ar ₂ -8											х			648
Ar ₁ -5 Ar ₁ -5	Ar ₂ -8 Ar ₂ -8												х	x	649 650
Ar_1-5	Ar ₂ -9	X													651
Ar ₁ -5	Ar_2 -9		x												652
Ar ₁ -5	Ar ₂ -9			X											653
Ar ₁ -5 Ar ₁ -5	Ar ₂ -9 Ar ₂ -9				X	x									654 655
Ar_1-5	Ar ₂ -9					Λ	x								656
Ar ₁ -5	Ar_2^2 -9							x							657
Ar ₁ -5	Ar ₂ -9								X						658
Ar ₁ -5 Ar ₁ -5	Ar ₂ -9									х	**				659
Ar ₁ -5 Ar ₁ -5	Ar ₂ -9 Ar ₂ -9										х	x			660 661
Ar ₁ -5	Ar ₂ -9												x		662
Ar ₁ -5	Ar ₂ -9													x	663
Ar ₁ -5	Ar ₂ -	X													664
Ar ₁ -5	10 Ar ₂ -		x												665
Air	10		Λ												003
Ar ₁ -5	Ar ₂ -			x											666
	10														
Ar ₁ -5	Ar ₂ -				X										667
Ar ₁ -5	10 Ar 2-					x									668
∠π1 _{−2}	Au ₂ -					Λ									000
Ar ₁ -5	Ar ₂ -						x								669
	10														
Ar ₁ -5	Ar ₂ -							X							670
Ar ₁ -5	10 Ar ₂ -								x						671
1-	10														

								Ar ₅							
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6		Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -5	Ar ₂ -									x					672
Ar ₁ -5	10 Ar ₂ -										x				673
Ar ₁ -5	10 Ar ₂ -											x			674
Ar ₁ -5	10 Ar ₂ -												x		675
Ar ₁ -5	10 Ar ₂ -													x	676
Ar ₁ -5	10 Ar ₂ -	x													677
Ar ₁ -5	11 Ar ₂ -		x												678
Ar ₁ -5	11 Ar ₂ -			x											679
Ar ₁ -5	11 Ar ₂ -				x										680
Ar ₁ -5	11 Ar ₂ -					x									681
Ar ₁ -5	11 Ar ₂ -						x								682
Ar ₁ -5	11 Ar ₂ -							x							683
Ar ₁ -5	11 Ar ₂ -								x						684
Ar ₁ -5	11 ² Ar ₂ -									x					685
Ar ₁ -5	11 Ar ₂ -										x				686
Ar ₁ -5	11 Ar ₂ -											x			687
Ar ₁ -5	11 Ar ₂ -											А	x		688
	11												Λ	**	689
Ar ₁ -5	Ar ₂ - 11													x	690
Ar ₁ -5	Ar ₂ -	х													
Ar ₁ -5	Ar ₂ - 12		х												691
Ar ₁ -5	Ar ₂ - 12			Х											692
Ar ₁ -5	Ar ₂ - 12				Х										693
Ar ₁ -5	Ar ₂ - 12					X									694
Ar ₁ -5	Ar ₂ - 12						Х								695
Ar ₁ -5	Ar ₂ - 12							х							696
Ar ₁ -5	Ar ₂ - 12								X						697
Ar ₁ -5	Ar ₂ - 12									х					698
Ar ₁ -5	Ar ₂ - 12										X				699
Ar ₁ -5	Ar ₂ - 12											x			700
Ar ₁ -5	Ar ₂ - 12												X		701
Ar ₁ -5	Ar ₂ - 12													x	702
Ar ₁ -5	Ar ₂ -	x													703
Ar ₁ -5	13 Ar ₂ -		x												704
Ar ₁ -5	13 Ar ₂ -			x											705
Ar ₁ -5	13 Ar ₂ -				x										706
Ar ₁ -5	13 Ar ₂ -					x									707
Ar ₁ -5	13 Ar ₂ -						v								708
~1 <u>-</u> 3	13						х								700

	-continued
--	------------

Ary									Ar ₅							_
13	Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9		Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Agr	Ar ₁ -5								x							709
Agr	Ar ₁ -5									x						710
13 Ary 5 Ary 6 Ary 7 Ary 13 Ary 13 Ary 13 Ary 14 Ary 15 Ary 16 Ary 17 Ary 17 Ary 18 A	Ar ₁ -5										x					711
13		13										v				
13		13										Λ.				
13		13											Х			
13	Ar ₁ -5													х		714
AT-6 AT-6 X 716 AT-6 AD-6 X 717 AT-6 AD-6 X 718 AT-6 AD-6 X X AT-6 AD-7 X X <	Ar ₁ -5														X	715
AT1-6 AP3-6		Ar ₂ -6	x	v												
AT1-6				^	x											718
AT1-6						X										
Ary 6							X	v								
Art 6 Art 6 Art 724 Art 724 Art 724 Art 725 Art 726 Art 727 Art 728 Art 727 Art 728 Art 728 Art 727 Art 728 Art 72								Λ	х							
Ar-6										x						
Ar_6											X					
Ar-6 Ar-6 Ar-7												X	37			
AT-6													А	x		
AT_r6 AT_r7-7 X AT_r6 AT_r9-7 X AT_r6 AT_r9-7 X AT_r6 AT_r9-8 <															X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X													
Ari-6 Ari-7				X												
Ar_1-6 Ar_2-7					Х	x										
Ar1-6 Ar2-7							x									
Ari-6 Ari-7	Ar ₁ -6							X								
Ar_1-6 Ar_2-7									X							
AT1-6 AT2-7 X 738 AT1-6 AT2-7 X X 739 AT1-6 AT2-7 X X 740 AT1-6 AT2-7 X X 741 AT1-6 AT2-8 X 742 742 AT1-6 AT2-8 X 743 743 AT1-6 AT2-8 X 744 744 AT1-6 AT2-8 X X 746 AT1-6 AT2-8 X X 747 AT1-6 AT2-8 X X 747 AT1-6 AT2-8 X X 747 AT1-6 AT2-8 X X 749 AT1-6 AT2-8 X X 750 AT1-6 AT2-8 X X X 751 AT1-6 AT2-8 X X										х	v					
Ar6											Λ	x				
AT ₁ -6 AT ₂ -8 x 741 AT ₁ -6 AT ₂ -8 x 742 AT ₁ -6 AT ₂ -8 x 743 AT ₁ -6 AT ₂ -8 x 745 AT ₁ -6 AT ₂ -8 x 745 AT ₁ -6 AT ₂ -8 x 746 AT ₁ -6 AT ₂ -8 x 746 AT ₁ -6 AT ₂ -8 x 747 AT ₁ -6 AT ₂ -8 x 749 AT ₁ -6 AT ₂ -8 x x AT ₁ -6 AT ₂ -9 x x AT ₁ -6 AT ₂ -9 x x AT ₁ -6 <td></td> <td>x</td> <td></td> <td></td> <td></td>													x			
Ar1-6 Ar2-8 x Ar1-6 Ar2-9 x <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>X</td><td></td><td></td></t<>														X		
Ar ₁ -6 Ar ₂ -8 x Ar ₁ -6 Ar ₂ -9 x			v												Х	
Arı-6 Arz-8			Λ	х												
Ar ₁ -6 Ar ₂ -8 x Ar ₁ -6 Ar ₂ -9 x					x											
Arī-6 Arī-8 x 747 Arī-6 Arī-8 x 748 Arī-6 Arī-8 x 749 Arī-6 Arī-8 x 750 Arī-6 Arī-8 x 750 Arī-6 Arī-8 x 751 Arī-6 Arī-8 x 752 Arī-6 Arī-8 x 753 Arī-6 Arī-9 x 754 Arī-6 Arī-9 x 755 Arī-6 Arī-9 x x						Х										
Arī-6 Arī-8 x 748 Arī-6 Arī-8 x 749 Arī-6 Arī-8 x 750 Arī-6 Arī-8 x 751 Arī-6 Arī-8 x 751 Arī-6 Arī-8 x 752 Arī-6 Arī-8 x 753 Arī-6 Arī-9 x 754 Arī-6 Arī-9 x 755 Arī-6 Arī-9 x 755 Arī-6 Arī-9 x 757 Arī-6 Arī-9 x 757 Arī-6 Arī-9 x x Arī-6 Arī-9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>х</td> <td>v</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							х	v								
Ar ₁ -6 Ar ₂ -8 x 749 Ar ₁ -6 Ar ₂ -8 x 750 Ar ₁ -6 Ar ₂ -8 x 750 Ar ₁ -6 Ar ₂ -8 x 751 Ar ₁ -6 Ar ₂ -8 x 752 Ar ₁ -6 Ar ₂ -8 x 753 Ar ₁ -6 Ar ₂ -8 x 753 Ar ₁ -6 Ar ₂ -9 x 754 Ar ₁ -6 Ar ₂ -9 x 754 Ar ₁ -6 Ar ₂ -9 x 755 Ar ₁ -6 Ar ₂ -9 x 756 Ar ₁ -6 Ar ₂ -9 x 757 Ar ₁ -6 Ar ₂ -9 x x Ar ₁ -6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Λ.</td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								Λ.	x							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										x						749
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											X					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ar ₂ -8										х	v			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar_1-6	Ar_2 -8											Λ	X		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															x	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			X													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Х	v											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					24	x										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							X									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								X								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									Х	v						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										А	х					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												x				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ar ₁ -6	Ar ₂ -9											X			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														X		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AI ₁ -0		Х													/08
10 Ar ₁ -6 Ar ₂ - x 771		Ar ₂ -		x												
Ar_1 -6 Ar_2 - x 771	Ar ₁ -6				x											770
	Ar6					x										771
	10					**										

61	2.2.7,22.7,22.2	62
	-continued	

							-co	ntınue	eu .						
								Ar ₅							-
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -6	Ar ₂ -					х									772
Ar ₁ -6	10 Ar ₂ -						x								773
Ar ₁ -6	10 Ar ₂ -							x							774
Ar ₁ -6	10 Ar ₂ -								x						775
Ar ₁ -6	10 Ar ₂ -									x					776
Ar ₁ -6	10 Ar ₂ -										x				777
Ar ₁ -6	10 Ar ₂ -											x			778
Ar ₁ -6	10 Ar ₂ -												x		779
Ar ₁ -6	10 Ar ₂ -													x	780
Ar ₁ -6	10 Ar ₂ -	x													781
Ar ₁ -6	11 Ar ₂ -		x												782
Ar ₁ -6	11 Ar ₂ -			x											783
Ar ₁ -6	11 Ar ₂ -				x										784
Ar ₁ -6	11 Ar ₂ -					x									785
Ar ₁ -6	11 Ar ₂ -						x								786
Ar ₁ -6	11 Ar ₂ -							x							787
Ar ₁ -6	11 Ar ₂ -								x						788
Ar ₁ -6	11 Ar ₂ -									x					789
Ar ₁ -6	11 Ar ₂ -										x				790
Ar ₁ -6	11 Ar ₂ -											x			791
Ar ₁ -6	11 Ar ₂ -												x		792
Ar ₁ -6	11 Ar ₂ -													x	793
Ar ₁ -6	11 Ar ₂ -	x													794
Ar ₁ -6	12 Ar ₂ -		x												795
Ar ₁ -6	12 Ar ₂ -			x											796
Ar ₁ -6	12 Ar ₂ -				x										797
Ar ₁ -6	12 Ar ₂ -					x									798
Ar ₁ -6	12 Ar ₂ -						x								799
Ar ₁ -6	12 Ar ₂ -							x							800
Ar ₁ -6	12 Ar ₂ -								x						801
Ar ₁ -6	12 Ar ₂ -									x					802
Ar ₁ -6	12 Ar ₂ -										x				803
Ar ₁ -6	12 Ar ₂ -											x			804
Ar ₁ -6	12 Ar ₂ -												x		805
	12												Α	v	806
Ar ₁ -6	Ar ₂ -													х	
Ar ₁ -6	Ar ₂ - 13	X													807
Ar ₁ -6	Ar ₂ - 13		x												808

63		64
	-continued	

							-co	ntınue	ea						
								Ar ₅							-
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -6	Ar ₂ -			х											809
Ar ₁ -6	13 Ar ₂ -				x										810
Ar ₁ -6	13 Ar ₂ -					x									811
Ar ₁ -6	13 Ar ₂ -						x								812
Ar ₁ -6	13 Ar ₂ -						-	v							813
	13							х							
Ar ₁ -6	Ar ₂ - 13								Х						814
Ar ₁ -6	Ar ₂ - 13									х					815
Ar ₁ -6	Ar ₂ - 13										x				816
Ar ₁ -6	Ar ₂ - 13											x			817
Ar ₁ -6	Ar ₂ -												x		818
Ar ₁ -6	13 Ar ₂ - 13													x	819
Ar ₁ -7 Ar ₁ -7	Ar ₂ -7 Ar ₂ -7	X	x												820 821
Ar ₁ -7	Ar ₂ -7		Α	x											822
Ar ₁ -7	Ar ₂ -7				X	w									823 824
Ar ₁ -7 Ar ₁ -7	Ar ₂ -7 Ar ₂ -7					X	x								825
Ar ₁ -7	Ar ₂ -7							X							826
Ar ₁ -7	Ar ₂ -7								X						827
Ar ₁ -7 Ar ₁ -7	Ar ₂ -7 Ar ₂ -7									X	x				828 829
Ar ₁ -7	Ar ₂ -7											x			830
Ar ₁ -7	Ar ₂ -7												X		831
Ar ₁ -7 Ar ₁ -7	Ar ₂ -7 Ar ₂ -8	x												x	832 833
Ar ₁ -7	Ar ₂ -8		x												834
Ar ₁ -7	Ar ₂ -8			X											835
Ar ₁ -7 Ar ₁ -7	Ar ₂ -8 Ar ₂ -8				X	x									836 837
Ar ₁ -7	Ar ₂ -8						x								838
Ar ₁ -7	Ar ₂ -8							x							839
Ar ₁ -7 Ar ₁ -7	Ar ₂ -8 Ar ₂ -8								X	x					840 841
Ar_1-7	Ar ₂ -8									Λ	x				842
Ar ₁ -7	Ar ₂ -8											x			843
Ar ₁ -7	Ar_2 -8												X		844
Ar ₁ -7	Ar ₂ -8													X	845
Ar ₁ -7 Ar ₁ -7	Ar ₂ -9 Ar ₂ -9	X	x												846 847
Ar ₁ -7	Ar ₂ -9			x											848
Ar ₁ -7	Ar ₂ -9				X										849
Ar ₁ -7	Ar ₂ -9					X									850
Ar ₁ -7 Ar ₁ -7	Ar ₂ -9 Ar ₂ -9						x	x							851 852
Ar_1-7	Ar ₂ -9							А	x						853
Ar ₁ -7	Ar_2^2 -9									x					854
Ar ₁ -7	Ar ₂ -9										x				855
Ar ₁ -7 Ar ₁ -7	Ar ₂ -9 Ar ₂ -9											X	x		856 857
Ar_1-7	Ar ₂ -9												Λ	x	858
Ar ₁ -7	Ar ₂ - 10	x													859
Ar ₁ -7	Ar ₂ - 10		x												860
Ar ₁ -7	Ar ₂ - 10			x											861
Ar ₁ -7	Ar ₂ - 10				x										862
Ar ₁ -7	Ar ₂ - 10					x									863
Ar ₁ -7	Ar ₂ - 10						х								864

								Ar ₅							
$\frac{\mathrm{Ar}_1}{}$	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -7	Ar ₂ - 10							x							865
Ar ₁ -7	Ar ₂ - 10								x						866
Ar ₁ -7	Ar ₂ - 10									x					867
Ar ₁ -7	Ar ₂ -										x				868
Ar ₁ -7	10 Ar ₂ -											x			869
Ar ₁ -7	10 Ar ₂ - 10												x		870
Ar ₁ -7	Ar ₂ - 10													x	871
Ar ₁ -7	Ar ₂ -	x													872
Ar ₁ -7	11 Ar ₂ -		x												873
Ar ₁ -7	11 Ar ₂ -			x											874
Ar ₁ -7	11 Ar ₂ -				X										875
Ar ₁ -7	11 Ar ₂ -					x									876
Ar ₁ -7	11 Ar ₂ -						x								877
Ar ₁ -7	11 Ar ₂ -							x							878
Ar ₁ -7	11 Ar ₂ -								x						879
Ar ₁ -7	11 Ar ₂ -									x					880
Ar ₁ -7	11 Ar ₂ -										x				881
Ar ₁ -7	11 Ar ₂ -											x			882
Ar ₁ -7	11 Ar ₂ -												x		883
Ar ₁ -7	11 Ar ₂ -													x	884
Ar ₁ -7	11 Ar ₂ -	x													885
Ar ₁ -7	12 Ar ₂ -		x												886
Ar ₁ -7	12 Ar ₂ -			x											887
Ar ₁ -7	12 Ar ₂ -				x										888
Ar ₁ -7	12 Ar ₂ -					x									889
Ar ₁ -7	12 Ar ₂ -						x								890
Ar ₁ -7	12 Ar ₂ -							x							891
Ar ₁ -7	12 Ar ₂ -								x						892
Ar ₁ -7	12 Ar ₂ -									x					893
Ar ₁ -7	12 Ar ₂ -										x				894
Ar ₁ -7	12 Ar ₂ -											x			895
Ar ₁ -7	12 Ar ₂ -												x		896
Ar ₁ -7	12 Ar ₂ -													x	897
Ar ₁ -7	12 Ar ₂ -	x												·-	898
	13	^	••												
Ar ₁ -7	Ar ₂ -		х												899
Ar ₁ -7	Ar ₂ - 13			X											900
Ar ₁ -7	Ar ₂ - 13				х										901

								Ar_5							_
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ -7	Ar ₂ -					x									902
Ar ₁ -7	13 Ar ₂ -						x								903
Ar ₁ -7	13 Ar ₂ -							x							904
Ar ₁ -7	13 Ar ₂ -								x						905
Ar ₁ -7	13 Ar ₂ -									x					906
Ar ₁ -7	13 Ar ₂ -										x				907
Ar ₁ -7	13 Ar ₂ -											x			908
Ar ₁ -7	13 Ar ₂ -												x		909
Ar ₁ -7	13 Ar ₂ -													x	910
Ar ₁ -8	13 ² Ar ₂ -8	x													911
Ar ₁ -8	Ar ₂ -8	7.	X												912
Ar ₁ -8	Ar ₂ -8			X											913
Ar ₁ -8	Ar_2-8				x										914
Ar ₁ -8	Ar_2 -8					x									915
Ar ₁ -8	Ar ₂ -8						X								916
Ar ₁ -8	Ar_2 -8							X							917
Ar ₁ -8	Ar_2 -8								X						918
Ar ₁ -8	Ar ₂ -8									X					919
Ar ₁ -8	Ar ₂ -8										X				920
Ar ₁ -8	Ar ₂ -8											x			921
Ar ₁ -8	Ar ₂ -8												X		922
Ar ₁ -8	Ar ₂ -8													X	923
Ar ₁ -8	Ar ₂ -9	x													924
Ar ₁ -8	Ar ₂ -9		X												925
Ar ₁ -8	Ar ₂ -9			X											926
Ar ₁ -8	Ar ₂ -9				X	**									927 928
Ar ₁ -8	Ar ₂ -9 Ar ₂ -9					X	x								929
Ar ₁ -8 Ar ₁ -8	Ar_2-9						Λ.	x							930
Ar ₁ -8	Ar_2-9							Λ	х						931
Ar_1 -8	Ar_2-9								^	x					932
Ar ₁ -8	Ar_2-9										x				933
Ar ₁ -8	Ar ₂ -9											x			934
Ar ₁ -8	Ar ₂ -9												x		935
Ar ₁ -8	Ar ₂ -9													x	936
Ar ₁ -8	Ar ₂ -	x													937
Ar ₁ -8	10 Ar ₂ -		x												938
	10		A												
Ar ₁ -8	Ar ₂ - 10			х											939
Ar ₁ -8	Ar ₂ - 10				X										940
Ar ₁ -8	Ar ₂ - 10					х									941
Ar ₁ -8	Ar ₂ - 10						X								942
Ar ₁ -8	Ar ₂ - 10							X							943
Ar ₁ -8	Ar ₂ - 10								X						944
Ar ₁ -8	Ar ₂ - 10									x					945
Ar ₁ -8	Ar_2 -										x				946
Ar ₁ -8	10 Ar ₂ -											x			947
Ar ₁ -8	10 Ar ₂ -												x		948
Ar ₁ -8	10 Ar ₂ -													x	949
Ar ₁ -8	10 Ar ₂ -	x													950
Ar ₁ -8	11 Ar ₂ -		x												951
	11														

								Ar ₅							
											Ar ₅ -	Ar ₅ -	Ar ₅ -	Ar ₅ -	•
Ar ₁	Ar ₂	Ar ₅ -1	Ar ₅ -2		Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	10	11	12	13	Compound
Ar ₁ -8	Ar ₂ - 11			х											952
Ar ₁ -8	Ar ₂ - 11				х										953
Ar ₁ -8	Ar ₂ - 11					х									954
Ar ₁ -8	Ar ₂ - 11						х								955
Ar ₁ -8	Ar ₂ - 11							Х							956
Ar ₁ -8	Ar ₂ - 11								х						957
Ar ₁ -8	Ar ₂ - 11									X					958
Ar ₁ -8	Ar ₂ - 11										X				959
Ar ₁ -8	Ar ₂ - 11											X			960
Ar_1-8	Ar ₂ -												x		961
Ar ₁ -8	Ar ₂ -													X	962
Ar ₁ -8	Ar ₂ - 12	x													963
Ar ₁ -8	Ar ₂ -		x												964
Ar ₁ -8	12 Ar ₂ -			x											965
Ar ₁ -8	12 Ar ₂ -				x										966
Ar ₁ -8	12 Ar ₂ -					x									967
Ar ₁ -8	12 Ar ₂ -						x								968
Ar ₁ -8	12 Ar ₂ -							x							969
Ar ₁ -8	12 Ar ₂ -								x						970
Ar ₁ -8	12 Ar ₂ -									x					971
Ar ₁ -8	12 Ar ₂ -										x				972
Ar ₁ -8	12 Ar ₂ -											x			973
Ar ₁ -8	12 Ar ₂ -												x		974
Ar ₁ -8	12 Ar ₂ -													x	975
Ar ₁ -8	12 Ar ₂ -	х													976
Ar ₁ -8	13 Ar ₂ -		x												977
Ar ₁ -8	13 Ar ₂ -			x											978
Ar ₁ -8	13 Ar ₂ -				x										979
	13				^										980
Ar ₁ -8	Ar ₂ -					х									981
Ar ₁ -8	Ar ₂ -						х								
Ar ₁ -8	Ar ₂ - 13							X							982
Ar ₁ -8	Ar ₂ - 13								X						983
Ar ₁ -8	Ar ₂ - 13									x					984
Ar ₁ -8	Ar ₂ - 13										x				985
Ar ₁ -8	Ar ₂ -											x			986
Ar ₁ -8	13 Ar ₂ -												x		987
Ar ₁ -8	13 Ar ₂ -													x	988
	13														

								Ar ₅							
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ 9	Ar ₂ -9	х													989
Ar ₁ 9 Ar ₁ 9	Ar ₂ -9 Ar ₂ -9		x	x											990 991
Ar_19	Ar_2-9			Λ.	x										992
Ar_19	Ar ₂ -9					x									993
Ar ₁ 9	Ar ₂ -9						X								994
Ar ₁ 9 Ar ₁ 9	Ar ₂ -9 Ar ₂ -9							X	x						995 996
Ar_19	Ar ₂ -9								Α.	x					997
Ar ₁ 9	Ar ₂ -9										x				998
Ar ₁ 9	Ar ₂ -9											X			999
Ar ₁ 9 Ar ₁ 9	Ar ₂ -9 Ar ₂ -9												Х	x	1000 1001
Ar ₁ 9	Ar ₂ -	X													1002
Ar ₁ 9	10 Ar ₂ -		x												1003
Ar ₁ 9	10 Ar ₂ - 10			x											1004
Ar ₁ 9	Ar ₂ - 10				x										1005
Ar ₁ 9	Ar ₂ - 10					x									1006
Ar ₁ 9	Ar ₂ - 10						х								1007
Ar ₁ 9 Ar ₁ 9	Ar ₂ - 10 Ar ₂ -							х	x						1008 1009
Ar ₁ 9	10 ² Ar ₂ -									x					1010
Ar ₁ 9	10 Ar ₂ -										x				1011
Ar ₁ 9	10 Ar ₂ - 10											x			1012
Ar ₁ 9	Ar ₂ - 10												x		1013
Ar ₁ 9	Ar ₂ - 10													x	1014
Ar ₁ 9	Ar ₂ - 11 Ar ₂ -	х	x												1015 1016
Ar ₁ 9 Ar ₁ 9	11 Ar ₂ -			x											1017
Ar ₁ 9	11 Ar ₂ -				x										1018
Ar ₁ 9	11 Ar ₂ -					x									1019
Ar ₁ 9	11 Ar ₂ -						x								1020
Ar ₁ 9	11 Ar ₂ -							x							1021
Ar ₁ 9	11 Ar ₂ -								x						1022
Ar ₁ 9	11 Ar ₂ - 11									x					1023
Ar ₁ 9	Ar ₂ - 11										x				1024
Ar ₁ 9	Ar ₂ - 11											x			1025
Ar ₁ 9	Ar ₂ - 11												X		1026
Ar ₁ 9	Ar ₂ - 11													x	1027
Ar ₁ 9	Ar ₂ - 12	x													1028
Ar ₁ 9	Ar ₂ - 12		х												1029
Ar ₁ 9	Ar ₂ - 12			х											1030
Ar ₁ 9	Ar ₂ - 12				х										1031

								U	5 9,0	154,5	23 E	52			
				73	3		-co	ntinue	ed						74
								Ar ₅							
Ar_1	Ar_2	Ar _e -1	Ar ₅ -2	Ar _e -3	Ar _s -4	Are-5	Are-6	Ar _e -7	Are-8	Ar _e -9	Ar ₅ -	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ 9	Ar ₂ -	,-	3-	,-	3	х	3-	3.	3-	,-					1032
Ar ₁ 9	12 Ar ₂ -						x								1033
Ar ₁ 9	12 Ar ₂ -							х							1034
Ar ₁ 9	12 Ar ₂ -								x						1035
Ar ₁ 9	12 Ar ₂ -									x					1036
A r ₁ 9	12 Ar ₂ -										x				1037
Ar ₁ 9	12 Ar ₂ -											x			1038
Ar ₁ 9	12 Ar ₂ -												х		1039
Ar ₁ 9	12 Ar ₂ -													x	1040
Ar ₁ 9	12 Ar ₂ -	x													1041
Ar ₁ 9	13 Ar ₂ -		X												1042
Ar ₁ 9	13 Ar ₂ -			x											1043
Ar ₁ 9	13 Ar ₂ -				X										1044
Ar ₁ 9	13 Ar ₂ -					x									1045
Ar ₁ 9	13 Ar ₂ -						x								1046
Ar ₁ 9	13 Ar ₂ -							x							1047
Ar ₁ 9	13 Ar ₂ -								x						1048
Ar ₁ 9	13 Ar ₂ -									x					1049
Ar ₁ 9	13 Ar ₂ -										x				1050
Ar ₁ 9	13 Ar ₂ -											x			1051
Ar ₁ 9	13 Ar ₂ -												x		1052
A r ₁ 9	13 Ar ₂ -													x	1053
Ar ₁ 10	13 Ar ₂ -	x													1054
Ar ₁ 10	10 Ar ₂ -		x												1055
Ar ₁ 10	10 A r ₂ -			x											1056
Ar ₁ 10	10 Ar ₂ -				x										1057
$Ar_{1}10$	10 A r ₂ -					x									1058
Ar ₁ 10	10 Ar ₂ -						x								1059
Ar ₁ 10	10 Ar 2-							x							1060
Ar ₁ 10	10 Ar ₂ -								x						1061
Ar ₁ 10	10 Ar ₂ -									x					1062
Ar ₁ 10	10 Ar ₂ -										x				1063
Ar ₁ 10	10 Ar ₂ -											x			1064
	10											Λ.			1065
Ar ₁ 10	Ar ₂ - 10												х		
Ar ₁ 10	Ar ₂ - 10													х	1066
Ar ₁ 10	Ar ₂ - 11	X													1067
Ar_110	Ar ₂ -		x												1068

								Ar ₅							
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ -	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ 10	Ar ₂ -			х											1069
Ar ₁ 10	11 Ar ₂ -				x										1070
Ar ₁ 10	11 Ar ₂ -					x									1071
Ar ₁ 10	11 Ar ₂ -						x								1072
Ar ₁ 10	11 Ar ₂ -							x							1073
Ar ₁ 10	11 Ar ₂ -								x						1074
Ar ₁ 10	11 Ar ₂ -									x					1075
Ar ₁ 10	11 Ar ₂ -										x				1076
Ar ₁ 10	11 Ar ₂ -											x			1077
Ar ₁ 10	11 Ar ₂ -												x		1078
Ar ₁ 10	11 Ar ₂ -													x	1079
Ar ₁ 10	11 Ar ₂ -	x													1080
Ar ₁ 10	12 Ar ₂ -		x												1081
Ar ₁ 10	12 Ar ₂ -			x											1082
Ar ₁ 10	12 Ar ₂ -				x										1083
Ar ₁ 10	12 Ar ₂ -					x									1084
Ar ₁ 10	12 Ar ₂ -						x								1085
Ar ₁ 10	12 Ar ₂ -							x							1086
Ar ₁ 10	12 Ar ₂ -								x						1087
Ar ₁ 10	12 Ar ₂ -									x					1088
Ar ₁ 10	12 Ar ₂ -										x				1089
Ar ₁ 10	12 Ar ₂ -											x			1090
Ar ₁ 10	12 Ar ₂ -												x		1091
Ar ₁ 10	12 Ar ₂ -													x	1092
Ar ₁ 10	12 Ar ₂ -	x													1093
Ar ₁ 10	13 Ar ₂ -		x												1094
Ar ₁ 10	13 Ar ₂ -			x											1095
Ar ₁ 10	13 Ar ₂ -				x										1096
Ar ₁ 10	13 Ar ₂ -					x									1097
Ar ₁ 10	13 Ar ₂ -						x								1098
Ar ₁ 10	13 Ar ₂ -							x							1099
Ar ₁ 10	13 Ar ₂ -								x						1100
Ar ₁ 10	13 Ar ₂ -									x					1101
Ar ₁ 10	13 Ar ₂ -										x				1102
	13										А	v			
Ar ₁ 10	Ar ₂ -											х			1103
Ar ₁ 10	Ar ₂ - 13												X		1104
$Ar_{1}10$	Ar ₂ -													x	1105

								Ar ₅							_
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ -	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ 11	Ar ₂ -	x													1106
Ar ₁ 11	11 Ar ₂ -		x												1107
Ar_111	11 Ar ₂ -			x											1108
Ar ₁ 11	11 Ar ₂ -				x										1109
Ar_111	11 Ar ₂ -					x									1110
Ar_111	11 Ar ₂ -						x								1111
Ar ₁ 11	11 Ar ₂ -							x							1112
Ar_111	11 Ar ₂ -								x						1113
Ar ₁ 11	11 Ar ₂ -									X					1114
Ar ₁ 11	11 Ar ₂ -										x				1115
Ar ₁ 11	11 Ar ₂ -											x			1116
Ar ₁ 11	11 Ar ₂ -												x		1117
Ar ₁ 11	11 Ar ₂ -													x	1118
Ar ₁ 11	11 Ar ₂ -	x													1119
Ar ₁ 11	12 Ar ₂ -		x												1120
Ar ₁ 11	12 Ar ₂ -			x											1121
Ar ₁ 11	12 Ar ₂ -				x										1122
Ar ₁ 11	12 Ar ₂ -					x									1123
Ar ₁ 11	12 Ar ₂ -						x								1124
Ar ₁ 11	12 Ar ₂ -							x							1125
Ar ₁ 11	12 Ar ₂ -								x						1126
Ar ₁ 11	12 Ar ₂ -									x					1127
Ar ₁ 11	12 Ar ₂ -										x				1128
Ar_111	12 Ar ₂ -											x			1129
Ar_111	12 Ar ₂ -												x		1130
Ar_111	12 Ar ₂ -													x	1131
Ar_111	12 Ar ₂ -	x													1132
Ar ₁ 11	13 Ar ₂ -		x												1133
Ar_111	13 Ar ₂ -			x											1134
Ar ₁ 11	13 Ar ₂ -				x										1135
Ar ₁ 11	13 Ar ₂ -					x									1136
Ar ₁ 11	13 Ar ₂ -						x								1137
Ar ₁ 11	13 Ar ₂ -							x							1138
Ar ₁ 11	13 Ar ₂ -								x						1139
Ar ₁ 11	13 Ar ₂ -									x					1140
Ar ₁ 11	13 Ar ₂ -										x				1141
	13										Λ				
Ar ₁ 11	Ar ₂ - 13											х			1142

								Ar ₅							
Ar_1	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9	Ar ₅ - 10	Ar ₅ - 11	Ar ₅ - 12	Ar ₅ - 13	Compound
Ar ₁ 11	Ar ₂ - 13												x		1143
Ar ₁ 11	Ar ₂ - 13													x	1144
Ar ₁ 12	Ar ₂ - 12	x													1145
Ar ₁ 12	Ar ₂ - 12		x												1146
Ar ₁ 12	Ar ₂ - 12			x											1147
Ar ₁ 12	Ar ₂ - 12				x										1148
Ar ₁ 12	Ar ₂ - 12					x									1149
Ar ₁ 12	Ar ₂ - 12						x								1150
Ar ₁ 12	Ar ₂ - 12							x							1151
Ar ₁ 12	Ar ₂ - 12								x						1152
Ar ₁ 12	Ar ₂ - 12									X					1153
Ar ₁ 12	Ar ₂ - 12										x				1154
Ar ₁ 12	Ar ₂ - 12											x			1155
Ar ₁ 12	Ar ₂ - 12												x		1156
Ar ₁ 12	Ar ₂ - 12													x	1157
Ar ₁ 12	Ar ₂ -	x													1158
Ar ₁ 12	Ar ₂ - 13		x												1159
Ar ₁ 12	Ar ₂ - 13			x											1160
Ar_112	Ar ₂ - 13				x										1161
Ar_112	Ar ₂ - 13					x									1162
Ar_112	Ar ₂ - 13						x								1163
Ar ₁ 12	Ar ₂ - 13							x							1164
Ar_112	Ar ₂ - 13								x						1165
Ar_112	Ar ₂ - 13									x					1166
Ar_112	Ar ₂ - 13										x				1167
Ar_112	Ar ₂ - 13											x			1168
Ar_112	Ar ₂ - 13												x		1169
Ar ₁ 12	Ar ₂ - 13													x	1170
Ar ₁ 13	Ar ₂ - 13	x													1171
Ar ₁ 13	Ar ₂ - 13		x												1172
Ar ₁ 13	Ar ₂ -			x											1173
Ar ₁ 13	13 Ar ₂ -				x										1174
Ar ₁ 13	13 Ar ₂ -					x									1175
Ar ₁ 13	13 Ar ₂ -						x								1176
Ar ₁ 13	13 Ar ₂ -							x							1177
Ar ₁ 13	13 Ar ₂ -								x						1178
	13								4	v					1179
Ar ₁ 13	Ar ₂ - 13									х					11/9

								Ar ₅							
Ar ₁	Ar_2	Ar ₅ -1	Ar ₅ -2	Ar ₅ -3	Ar ₅ -4	Ar ₅ -5	Ar ₅ -6	Ar ₅ -7	Ar ₅ -8	Ar ₅ -9			Ar ₅ - 12		Compound
Ar ₁ 13											x				1180
	13														
Ar_113	Ar ₂ -											X			1181
	13														
Ar_113	Ar ₂ -												x		1182
	13														
$Ar_{1}13$	Ar ₂ -													x	1183
-	13														

In one embodiment, a first device is provided. The first device comprises an organic light emitting device, further comprising: an anode, a cathode, a hole injection layer disposed between the anode and the emissive layer, a first hole transport layer disposed between the hole injection layer and 20 the emissive layer, and a second hole transport layer disposed between the first hole transport layer and the emissive layer, and wherein the second hole transport layer comprises a compound of formula:

81

Formula II

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_4

In the compound of Formula II, Ar_1 , Ar_2 , and Ar_5 are independently selected from the group consisting of aryl and heteroaryl and R_3 and R_4 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, 45 cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof.

As used herein, a hole transporting layer (HTL) in an OLED can be disposed between the and anode and the emissive layer. It is preferred that the HTL is relatively hole conductive, which helps avoid high operating voltage. In order to achieve high hole conductivity, high hole mobility materials 55 are used. These materials are usually triarylamine compounds. These compounds may have HOMO/LUMO levels and/or triplet energy which are not compatible with the emissive layer for optimum device performance and lifetime. On the other hand, in order to have an HTL with more compatible 60 HOMO/LUMO levels and/or triplet energy, hole mobility may be compromised.

In order to achieve a low voltage, higher device performance and lifetime device, the introduction of a secondary hole transporting layer, in addition to the primary hole transporting layer has been demonstrated and shown to be effective. The primary hole transporting layer is largely respon-

sible for hole transport. The secondary hole transporting layer, sandwiched between the primary hole transporting layer and the emissive layer, functions as a bridging layer. The thickness of the secondary hole transport layer is preferably low in order to not significantly increase the operating voltage. However, the hole injection from the secondary hole transporting layer to the emissive layer, charge confinement and excition confinement between the secondary hole transporting layer and the emissive layer are controlled by the energy levels and single/triplet energy of the secondary hole transporting layer. Since the secondary hole transporting layer thickness is low, there is relatively little concern about the hole mobility. This allows for a higher flexibility in the design of materials with appropriate energy levels and single/triplet energy to function well with the emissive layer.

82

It has surprisingly been discovered that compounds of Formula I and Formula II are useful materials in the secondary hole transporting layer. In the compounds of Formula I, the most electron rich portion of the molecule is the N(Ar₁)(Ar₂) group. Without being bound by theory, this part is believed to be mostly responsible for the hole transport.

The carbazole-N— Ar_5 moiety may be less electron rich and may provide a relatively accessible LUMO level and π -conjugation to stabilize radical anions if the material is reduced. In particular, Ar_5 is preferably a high triplet fusedring aromatic as disclosed herein. In some embodiments, Ar_5 can be triphenylene or heteroaromatic group such as dibenzofuran, dibenzothiophene and dibenzoselenophene. It has been discovered that the aforementioned substitution pattern for Ar_1 , Ar_2 , and Ar_5 can render compounds with high triplet energy and significant charge stabilization.

In one embodiment, the compound has the formula:

Formula I

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_4
 R_2

40

45

50

55

60

65

wherein X is selected from the group consisting of O, S, and Se, wherein R_1 and R_2 independently represent mono, di, tri, tetra substitution, or no substitution, and wherein R_1 and R_2 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

In one embodiment, the second hole transport layer is disposed adjacent to the first hole transport layer. By "adjacent" it is meant that the second hole transport layer is physically in contact with the first hole transport layer. In one embodiment, the first hole transport layer is thicker than the 15 second hole transport layer. In one embodiment, the first hole transport layer comprises a compound with the formula:

$$\operatorname{Ar}_a$$
 Ar_c Ar_c Ar_d ,

wherein Ar_a , Ar_b , Ar_c and Ar_d are independently selected from the group consisting of aryl and heteroaryl.

In one embodiment, the triplet energy of the compound of Formula II is higher than the emission energy of the emissive layer. $_{30}$

In one embodiment, Ar₁, Ar₂ and Ar₅ are independently selected from the group consisting of:

-continued

In one embodiment, Ar_1 and Ar_2 are independently selected from the group consisting of:

In one embodiment, Ar_1 and Ar_2 are independently selected from the group consisting of:

In one embodiment, the first device further comprises a first dopant material that is an emissive dopant comprising a transition metal complex having at least one ligand or part of 65 the ligand if the ligand is more than bidentate selected from the group consisting of:

30

35

40

wherein R_a , R_b , R_c , and R_d may represent mono, di, tri, or tetra substitution, or no substitution and wherein R_a , R_b , R_c , and R_d are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and wherein two adjacent substituents of R_a , R_b , R_c , and R_d are optionally joined to form a fused ring or form a multidentate ligand.

In one embodiment, the first device is a consumer product.

In one embodiment, the first device is an organic light-emitting device. In one embodiment, the first device comprises a lighting panel. In one embodiment, a first device comprising an organic light emitting device, further comprising an anode, a cathode, a first organic layer disposed between the anode and the cathode, and wherein the first organic layer comprises a compound of formula:

Formula I

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_1
 R_2

In the compound of Formula I, Ar_1 and Ar_2 are independently selected from the group consisting of aryl and heteroaryl, X is selected from the group consisting of O, S, and Se, R_1 and R_2 independently represent mono, di, tri, tetra substitution, or no substitution, and R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfanyl, sulfonyl, phosphino, and combinations thereof.

In one embodiment, the first organic layer is an emissive layer. In one embodiment, the emissive layer is a phosphorescent emissive layer.

Device Examples

All OLED device examples were fabricated by high vacuum (<10⁻⁷ Torr) thermal evaporation (VTE). The anode electrode is ~800 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1,000 Å of A1. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H₂O and O₂) and a moisture getter was incorporated inside the package.

The organic stack of the Device Examples in Table 2 consists of sequentially, from the ITO surface, 100 Å of LG101 (purchased from LG Chem) as the hole injection layer (HIL), 500 Å of NPD as the primary hole transporting layer (HTL), 50 Å of the secondary hole transporting layer, 300 Å of Compound A doped with 10% or 12% of phosphorescent dopant Compound B as the emissive layer (EML), 50 Å of Compound A as the ETL2 and 450 Å of Alq₃ as the ETL1.

Comparative Example 1 was fabricated in the same way except that there was no secondary hole transporting layer, and the thickness of the primary hole transporting layer was increased to 550 Å to match the combined thickness of the primary and secondary hole transporting layers in the Device Examples.

The structures of the aforementioned device components are as follows:

TABLE 2

		Г)aviaa n	arfarmo	nga gumm	10.57				
	Device performance summary.							mA/cm ²		
	Secondary		1931	CIE	Voltage	LE	EQE	PE	L_{o}	LT ₈₀
Example	HTL [50 Å]	EML [300 Å]	x	у	[V]	[cd/A]	[%]	[lm/W]	$[cd/m^2]$	[h]
Device Example 1	Compound 113	Compound A: Compound B 12%	0.330	0.624	4.9	76.5	20.9	49.0	25338	200
Device Example 2	Compound 178	Compound A: Compound B 10%	0.322	0.629	4.8	76.3	20.9	50.3	25112	422
Device Example 3	Compound 182	Compound A: Compound B 10%	0.322	0.629	4.7	75.5	20.7	50.3	24932	420
Comparative Device Example 1	none	Compound A: Compound B 12%	0.327	0.626	4.9	68.1	18.6	43.8	19596	290

Compound A

Compound B

40

Device Examples 1-3 are the same as Comparative Device Example 1 except for the presence of the secondary HTL in former and the absence of the secondary HTL in latter. Device Examples 1-3 have Compounds 113, 178 and 182 respectively as the secondary HTL. The efficiencies of Device Examples 1-3 are higher (EQE=20.7-20.9%) than the efficiency of Comparative Device Example 1 (EQE=18.6%). The operation lifetimes of Device Examples 2 and 3 are remarkably high. The LT₈₀, the time required for the initial luminance (L_0) to drop to 80% of its initial value, at a constant current density of 40 mA/cm², is ~420 h, compared to 290 h of Comparative Device Example 1. Without being bound by 55 theory, the improved efficiency and lifetime when Compounds 178 and 182 are used as the secondary HTL may be due to the high triplet energy, providing improved exciton confinement; the presence of a dibenzothiophene or triphenylene group, providing a high triplet, charge stabilization moiety; and a sufficiently shallow HOMO level (Compound 178 HOMO=-5.23 eV, Compound 182 HOMO=-5.21 eV, NPD HOMO=-5.17 eV) for hole transport.

Although hole conductivity may be reduced in compounds
of Formula I or Formula II with respect to traditionally used
triarylamine compounds such as NPD, compounds of Formula I and Formula II that bear substituents such as

40

at the Ar_1 and Ar_2 positions have better hole mobility that compounds bearing substituents such as

at these same positions because the latter group of substituents, deepens the HOMO levels, which causes a larger increase in hole conductivity. Additionally, although device lifetimes for a given thickness of the secondary HTL are sometimes reduced for compounds bearing Group 2 substituents compared with Group 1 substituents, this difference can be mitigated by decreasing the thickness of the secondary HTL.

The HOMO and LUMO levels and triplet energy are summarized in Table 3. The LT₈₀ of Device Example 1 with Compound 113 as the secondary HTL is 200 h, less stable than Device. Example 1 (422 h) with Compound 178 as the secondary HTL. The difference between Compound 113 and Compound 178 is the N(Ar₁)(Ar₂) group. In general, if the N is connected to a dibenzofuran or dibenzothiphene group, the HOMO gets deeper (Compound 1 HOMO=–5.31 eV, NPD HOMO=–5.17 eV) and hole conductivity may be reduced. This may lead to shorter device operation lifetime if the hole conductivity of the secondary HTL is not high enough, even though its thickness is kept low.

TABLE 3

HOMO, LUMO levels and triplet energy				
Compound	HOMO (eV)*	LUMO (eV)*	Triplet energy (nm)#	
NPD	-5.17	-1.98	500	
Compound 113	-5.31	-1.98	436	
Compound 178	-5.23	-1.99	450	
Compound 182	-5.21	-2.04	450	

*By solution electrochemistry using ferrocene as the standard

*By DFT/B3LYP/6-31 g (d) optimized geometry

Combination with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

HIL/HTL:

A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but not limit to: a phthalocyanine or porphryin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting

polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and sliane derivatives; a metal oxide derivative, such as MoO_{χ} ; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and 5 a cross-linkable compounds.

Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:

Each of Ar¹ to Ar⁹ is selected from the group consisting 40 aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, diben- 45 zoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triaz-50 ine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuro-55 pyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic 60 heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consist- 65 ing of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl,

cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, sulfonyl, phosphine, and combinations thereof.

In one aspect, Ar¹ to Ar⁹ is independently selected from the group consisting of:

k is an integer from 1 to 20; X^1 to X^8 is C (including CH) or N; Ar^1 has the same group defined above.

Examples of metal complexes used in HIL or HTL include, but not limit to the following general formula:

$$M$$
—Ln

M is a metal, having an atomic weight greater than 40; $(Y^1 - Y^2)$ is a bidentate ligand, Y^1 and Y^2 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

In one aspect, $(Y^1 - Y^2)$ is a 2-phenylpyridine derivative. In another aspect, $(Y^1 - Y^2)$ is a carbene ligand.

In another aspect, M is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about

0.6 V. Host:

The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex

as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant.

5 While the Table below categorizes host materials as preferred for devices that emit various colors, any host material may be used with any dopant so long as the triplet criteria is satisfied.

Examples of metal complexes used as host are preferred to have the following general formula:

$$M$$
—Ln

M is a metal; $(Y^3 - Y^4)$ is a bidentate ligand, Y^3 and Y^4 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

In one aspect, the metal complexes are:

(O—N) is a bidentate ligand, having metal coordinated to atoms O and N.

In another aspect, M is selected from Ir and Pt. In a further aspect, $(Y^3 - Y^4)$ is a carbene ligand.

Examples of organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzo-45 furan, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phe- 55 noxazine, benzofuropyridine, furodipyridine, zothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. 65 Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium,

halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, host compound contains at least one of the following groups in the molecule:

-continued

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{5}$$

$$X^{6}$$

$$X^{7}$$

$$X^{8}$$

$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$Z^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{5}$$

R¹ to R² is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

k is an integer from 0 to 20.

X¹ to X⁸ is selected from C (including CH) or N.

 Z^1 and Z^2 is selected from NR¹, O, or S.

HRI

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. 40 The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.

In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.

In another aspect, compound used in HBL contains at least one of the following groups in the molecule:

-continued
$$\begin{bmatrix} O \\ N \end{bmatrix}_m Al - L_{3-m}$$

k is an integer from 0 to 20; L is an ancillary ligand, m is an $_{10}$ $\,$ integer from 1 to 3.

ETL:

35

50

55

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.

In one aspect, compound used in ETL contains at least one 20 of the following groups in the molecule:

R¹ is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

Ar¹ to Ar³ has the similar definition as Ar's mentioned above.

X¹ to X⁸ is selected from C (including CH) or N.

In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:

$$\begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{m} Al - L_{3-m} \begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{m} Be - L_{2-m}$$

$$\begin{bmatrix} O \\ N \end{bmatrix}_m Zn - L_{2-m} \begin{bmatrix} N \\ N \end{bmatrix}_m Zn - L_{2-m}$$

100

(O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N,N; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal.

In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated.

In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 4 below. Table 4 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.

TADIE

	TABLE 4	
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	Hole injection materials	
Phthalocyanine and porphryin compounds	N N N N N N N N N N N N N N N N N N N	Appl. Phys. Lett. 69, 2160 (1996)
Starburst triarylamines		J. Lumin. 72-74, 985 (1997)
CE	— CU F 1	Appl Phys Lett 78

CF_x Fluorohydrocarbon polymer - CH_xF_y $\frac{1}{n}$

Appl. Phys. Lett. 78, 673 (2001)

TABLE 4-continued

TABLE 4-continued					
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS			
Conducting polymers (e.g., PEDOT:PSS, polyaniline, polypthiophene)	$\begin{array}{c} \operatorname{SO_3^-(H^+)} \\ \\ \\ \\ \\ \\ \\ \end{array}$	Synth. Met. 87, 171 (1997) WO2007002683			
Phosphonic acid and sliane SAMs	N \longrightarrow $SiCl_3$	US20030162053			
Triarylamine or polythiophene polymers with conductivity dopants	Br CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	EP1725079A1			

	TABLE 4-continued	
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Organic compounds with conductive inorganic compounds, such as molybdenum and tungsten oxides	N $+$ MoO_X	US20050123751 SID Symposium Digest, 37, 923 (2000 WO2009018009
n-type semiconducting organic complexes	NC CN N N N NC NC NC NC NC NC N	US20020158242
Metal organometallic complexes	Ir	US20060240279
Cross-linkable compounds		US20080220265

TABLE 4-continued

	TABLE 4-continued	
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Polythiophene based polymers and copolymers		WO2011075644 EP2350216
	Hole transporting materials	
Triarylamines (e.g., TPD, α-NPD)		Appl. Phys. Lett. 51, 913 (1987)
		US5061569
		EP650955

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
		J. Mater. Chem. 3, 319 (1993)
		Appl. Phys. Lett. 90, 183503 (2007)
		Appl. Phys. Lett. 90, 183503 (2007)

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Triaylamine on spirofluorene core	Ph_2N NPh_2 NPh_2	Synth. Met. 91, 209 (1997)
Arylamine carbazole compounds		Adv. Mater. 6, 677 (1994), US20080124572
Triarylamine with (di)benzothiophene/ (di)benzofuran		US20070278938, US20080106190 US20110163302
Indolocarbazoles		Synth. Met. 111, 421 (2000)

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Isoindole compounds		Chem. Mater. 15, 3148 (2003)
Metal carbene complexes	N Ir	US20080018221
	Phosphorescent OLED host materials Red hosts	
Arylcarbazoles	N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	Appl. Phys. Lett. 78, 1622 (2001)
Metal 8- hydroxyquinolates (e.g., Alq ₃ , BAlq)	$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ $\begin{bmatrix} \\ \\ \end{bmatrix}$	Nature 395, 151 (1998)
	Al-O	US20060202194

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	AI-O	WO2005014551
	$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_{0} \end{bmatrix}_{2} Al - 0$	WO2006072002
Metal phenoxybenzothiazole compounds	\sum_{S} N Zn	Appl. Phys. Lett. 90, 123509 (2007)
Conjugated oligomers and polymers (e.g., polyfluorene)	C_8H_{17} C_8H_{17}	Org. Electron. 1, 15 (2000)
Aromatic fused rings		WO2009066779, WO2009066778, WO2009063833, US20090045731, US2009008311, US20090008605, US20090009065
Zinc complexes	N Zn O N	WO2010056066
Chrysene based compounds		WO2011086863

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	Green hosts	
Arylcarbazoles		Appl. Phys. Lett. 78, 1622 (2001)
	N N N N N N N N N N N N N N N N N N N	US20030175553
		WO2001039234
Aryltriphenylene compounds		US20060280965
		US20060280965
		WO2009021126

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Poly-fused heteroaryl compounds		US20090309488 US20090302743 US20100012931
Donor acceptor type molecules		WO2008056746
		WO2010107244
Aza-carbazole/ DBT/DBF		JP2008074939

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	N N N N N N N N N N N N N N N N N N N	US20100187984
Polymers (e.g., PVK)	N N	Appl. Phys. Lett. 77, 2280 (2000)
Spirofluorene compounds		WO2004093207
Metal phenoxybenzooxazole compounds	Al-O	WO2005089025
	Al-O-N	WO2006132173
	Zn Zn	JP200511610

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Spirofluorene- carbazole compounds		JP2007254297
		JP2007254297
Indolocabazoles		WO2007063796
		WO2007063754
5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)	N-N N	J. Appl. Phys. 90, 5048 (2001)

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
		WO2004107822
Tetraphenylene complexes		US20050112407
Metal phenoxypyridine compounds	N Zn	WO2005030900
Metal coordination complexes (e.g., Zn, Al with N N ligands)	N Zn Slue hosts	US20040137268, US20040137267
	Ditte note	
Arylcarbazoles	N N N N N N N N N N N N N N N N N N N	Appl. Phys. Lett, 82, 2422 (2003)

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
		US20070190359
Dibenzothiophene/ Dibenzofuran- carbazole compounds		WO2006114966, US20090167162
	S S S S S S S S S S S S S S S S S S S	US20090167162
		WO2009086028
	S S S S S S S S S S S S S S S S S S S	US20090030202, US20090017330
		US20100084966

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Silicon aryl compounds		US20050238919
		WO2009003898
Silicon/ Germanium aryl compounds	S _{Si}	EP2034538A
Aryl benzoyl ester		WO2006100298
Carbazole linked by non- conjugated groups		US20040115476
Aza-carbazoles		US20060121308

TABLE 4-continued

A CATEDIAL	TABLE 4-Continued	DUDLICATIONS
MATERIAL High triplet metal organometallic complex	EXAMPLES OF MATERIAL N Ir	PUBLICATIONS US7154114
	Phosphorescent dopants Red dopants	
Heavy metal porphyrins (e.g., PtOEP)	Et Et Et N N N Et Et Et Et	Nature 395, 151 (1998)
Iridium(III) organometallic complexes	S Ir O	Appl. Phys. Lett. 78, 1622 (2001)
	Ir o	US2006835469
		US2006835469

TABLE 4-continued

	Tribel 4 continued	
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
		US20060202194
		US20060202194
	Ir 3	US20070087321
		US20080261076 US20100090591
	Ir Ir	US20070087321

TABLE 4-continued

	TABLE 4-continued	
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	$\prod_{\mathrm{H}_{17}\mathrm{C}_8}\mathrm{Ir}$	Adv. Mater. 19, 739 (2007)
	Ir(acac)	WO2009100991
		WO2008101842
	PPh ₃ Ir—Cl PPh ₃	US7232618
Platinum(II) organometallic complexes	N O O	WO2003040257

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	Pt N	US20070103060
Osminum(III) complexes	F_3C N N $Os(PPhMe_2)_2$	Chem. Mater. 17, 3532 (2005)
Ruthenium(II) complexes	$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $	Adv. Mater. 17, 1059 (2005)
Rhenium (I), (II), and (III) complexes	Re—(CO) ₄ Green dopants	US20050244673
Iridium(III) organometallic complexes		Inorg. Chem. 40, 1704 (2001)

and its derivatives

MATERIAL EXAMPLES OF MATERIAL PUBLICATIONS

US20020034656

US7332232

US20090108737

TABLE 4-continued

TABLE 4-continued		
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
		WO2010028151
		EP1841834B
	Ir	US20060127696
	Ir 3	US20090039776
	Ir S	US6921915

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	In the last of the	US20100244004
		US6687266
	Ir	Chem. Mater. 16, 2480 (2004)
	Ir	US20070190359
	Ir	US20060008670 JP2007123392
	Ir	WO2010086089, WO2011044988

TABLE 4-continued

	TABLE 4-continued	
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
		Adv. Mater. 16, 2003 (2004)
	Ir N	Angew. Chem. Int. Ed. 2006, 45, 7800
	N S Ir	WO2009050290
	S N Ir	US20090165846
		US20080015355
	$\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}_3$ $\operatorname{Ir}(\operatorname{PF}_6)_3$	US20010015432

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	Ir S	US20100295032
Monomer for polymeric metal organometallic compounds		US7250226, US7396598
Pt(II) organometallic complexes, including polydentated ligands	Pt—Cl	Appl. Phys. Lett. 86, 153505 (2005)
	Pt—O	Appl. Phys. Lett. 86, 153505 (2005)
	P_1 P_1 F_5	Chem. Lett. 34, 592 (2005)

TABLE 4-continued		
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	N Pt O	WO2002015645
	Ph Pt N Ph	US20060263635
	N N N Pt	US20060182992 US20070103060
Cu complexes		WO2009000673

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	$(iBu)_2P$ Cu Cu $P(iBu)_2$ $P(iBu)_2$	US20070111026
Gold complexes	N—Au——N	Chem. Commun. 2906 (2005)
Rhenium(III) complexes	F ₃ C OC N CO	Inorg. Chem. 42, 1248 (2003)
Osmium(II) complexes	Os	US7279704

TABLE 4-continued

Deuterated organometallic complexes	D D D Ir	US20030138657
Organometallic complexes with two or more metal centers		US20030152802
	F F S Prum Prum Prum Prum Prum Prum Prum Prum	US7090928
Iridium(III) organometallic		WO2002002714

Iridium(III) organometallic complexes

TABLE 4-continued

TABLE 4-continued		
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	Ir January 1	WO2006009024
	Ir	US20060251923 US20110057559 US20110204333
	Ir	US7393599, WO2006056418, US20050260441, WO2005019373
	Ir O	US7534505
		WO2011051404
	N Ir+	US7445855

TABLE 4-continued		
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	Ir	US20070190359, US20080297033 US20100148663
	Ir 3	US7338722
	$\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}_3$ Ir	US20020134984
	N N N N N N N N N N N N N N N N N N N	Angew. Chem. Int. Ed. 47, 1 (2008)
	N N Ir	Chem. Mater. 18, 5119 (2006)

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
	F Ir	Inorg. Chem. 46, 4308 (2007)
	N N Ir	WO2005123873
	N Ir	WO2005123873
	$\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}_3$ Ir	WO2007004380
	N II N N N N N N N N N N N N N N N N N	WO2006082742

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Osmium(II) complexes	N N Os N N N N N N N N N N N N N N N N N	US7279704
	$\bigcap_{N} \bigcap_{2} \operatorname{Os}(PPh_{3})$	Organometallics 23, 3745 (2004)
Gold complexes	$\begin{array}{c c} Ph_2P & PPh_2 \\ \hline & Au & Au \\ Cl & \end{array}$	Appl. Phys. Lett. 74, 1361 (1999)
Platinum(II) complexes	S N N N N N N N N N N N N N N N N N N N	WO2006098120, WO2006103874
Pt tetradentate complexes with at least one metal- carbene bond	Exciton/hole blocking layer materials	US7655323
Bathocuprine compounds (e.g., BCP, BPhen)	Exciton/hole blocking layer materials	Appl. Phys. Lett. 75, 4 (1999)

TABLE 4-continued		
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
		Appl. Phys. Lett. 79, 449 (2001)
Metal 8- hydroxyquinolates (e.g., BAlq)	Al-O	Appl. Phys. Lett. 81, 162 (2002)
5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole		Appl. Phys. Lett. 81, 162 (2002)
Triphenylene compounds		US20050025993

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Fluorinated aromatic compounds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Appl. Phys. Lett. 79, 156 (2001)
Phenothiazine-S-oxide		WO2008132085
Silylated five- membered nitrogen, oxygen, sulfur or phosphorus dibenzoheterocycles	Si	WO2010079051
Aza-carbazoles		US20060121308

Electron transporting materials

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Anthracene- benzoimidazole compounds		WO2003060956
		US20090179554
Aza triphenylene derivatives		US20090115316
Anthracene- benzothiazole compounds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Appl. Phys. Lett. 89, 063504 (2006)
Metal 8- hydroxyquinolates (e.g., Alq ₃ , Zrq ₄)	$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_{0} \end{bmatrix}_{3}$	Appl. Phys. Lett. 51, 913 (1987) US7230107

TABLE 4-continued

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Metal hydroxybenoquinolates	$\begin{bmatrix} \\ \\ \\ \end{bmatrix}_2$ Be	Chem. Lett. 5, 905 (1993)
Bathocuprine compounds such as BCP, BPhen, etc		Appl. Phys. Lett. 91, 263503 (2007)
		Appl. Phys. Lett. 79, 449 (2001)
5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole)		Appl. Phys. Lett. 74, 865 (1999)
	N-N N-N	Appl. Phys. Lett. 55, 1489 (1989)
		Jpn. J. Apply. Phys. 32, L917 (1993)

TABLE 4-continued

	TABLE 4-continued	
MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Silole compounds	N N N N N N N N N N N N N N N N N N N	Org. Electron. 4, 113 (2003)
Arylborane compounds	B B B	J. Am. Chem. Soc. 120, 9714 (1998)
Fluorinated aromatic compounds	$F \longrightarrow F \longrightarrow$	J. Am. Chem. Soc. 122, 1832 (2000)
Fullerene (e.g., C60)		US20090101870
Triazine complexes	$F \longrightarrow F$	US20040036077

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Zn (N^N) complexes	N N SO ₂	US6528187

EXPERIMENTAL

Chemical abbreviations used throughout this document are as follows: Cy is cyclohexyl, dba is dibenzylideneacetone, EtOAc is ethyl acetate, DME is dimethoxyethane, dppe is 1,2-bis(diphenylphosphino)ethane, THF is tetrahydrofuran, DMF is dimethylformamide, DCM is dichloromethane, S-Phos is dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-25 yl)phosphine, Tf is trifluoromethylsulfonate. Unless specified otherwise, references to degassing a particular solvent refer to saturating the solvent sufficiently with dry nitrogen gas (by bubbling it in the solvent) to substantially remove gaseous oxygen from the solvent.

Synthesis of Compound 113

Synthesis of N-(4-bromophenyl)-N-phenyldibenzo [b,d]thiophen-4-amine

Toluene (125 mL) was bubbled with nitrogen gas for 15 minutes, and subsequently 1,1'-Bis(diphenylphosphino)ferrocene (0.2 g, 0.4 mmol) and $Pd_2(dba)_3$ (0.1 g, 0.1 mmol) were added. The mixture was bubbled with nitrogen gas for

15 minutes, then N-phenyldibenzo[b,d]thiophen-4-amine (3.2 g, 11.6 mmol), 1-bromo-4-iodobenzene (4.5 g, 15.9 mmol), NaO'Bu (1.5 g, 15.6 mmol) were added. The mixture was bubbled with nitrogen gas for 15 minutes and refluxed for 12 hours. After cooling, the reaction mixture was filtered through a silica pad and washed with 50% $\rm CH_2Cl_2$ /hexane. The solvent was removed in vacuo and the residue was purified by flash chromatography using 10-15% $\rm CH_2Cl_2$ /hexane to afford N-(4-bromophenyl)-N-phenyldibenzo[b,d] thiophen-4-amine (4.0 g, 80% yield) as a white solid.

Synthesis of N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3, 2-dioxaborolan-2-yl)phenyl)dibenzo[b,d]thiophen-4-amine

To a solution of N-(4-bromophenyl)-N-phenyldibenzo[b, d]thiophen-4-amine (8.3 g, 19.3 mmol) in 1,4-dioxane (250 mL) was added bis(pinacolato)diboron (7.6 g, 29.9 mmol), KOAc (3.9 g, 39.8 mmol), and the solution was bubbled with nitrogen for 15 minutes. Pd(dppf)Cl₂.CH₂Cl₂ (0.5 g, 0.6

20

25

30

Synthesis of Compound 113

mmol) was then added to the solution, and the reaction mixture was bubbled with nitrogen for 15 minutes. The resultant mixture was refluxed for 12 hours. After cooling, $\rm H_2O\,(1\,mL)$ was added and stirred for 15 min. The reaction mixture was filtered through a silica pad and washed with 75% $\rm CH_2Cl_2/hexane$. The solvent was removed in vacuo and the residue was purified by flash chromatography using 25-40% $\rm CH_2Cl_2/hexane$ to afford N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)dibenzo[b,d]thiophen-4-amine (5.9 g, 64% yield) as a white solid.

Synthesis of N-(4-(9H-carbazol-3-yl)phenyl)-N-phenyldibenzo[b,d]thiophen-4-amine

To a solution of N-phenyl-N-(4-(4,4,5,5-tetramethyl-1,3, 2-dioxaborolan-2-yl)phenyl)dibenzo[b,d]thiophen-4-amine (5.9 g, 12.4 mmol), 3-bromocabazole (3.5 g, 14.2 mmol), $\rm K_2CO_3$ (16.6 g, 120.0 mmol) in toluene (150 mL), water (50 mL) and EtOH (50 mL) was bubbled for 30 min. Pd(PPh_3)_4 (0.4 g, 0.4 mmol) was added. The mixture was bubbled for 15 min. The resultant mixture was refluxed for 12 h. After cooling, the reaction mixture was extracted by $\rm CH_2Cl_2$ and dried by MgSO_4. The solvent was removed in vacuo and the residue was purified by flash chromatography using 25-50% $\rm CH_2Cl_2/hexane$ to afford N-(4-(9H-carbazol-3-yl)phenyl)-N-phenyldibenzo[b,d]thiophen-4-amine (5.8 g, 91% yield) as a white solid.

$$Xylene, Pd_2(dba)_3,$$

Compound 113

Xylene (175 mL) was bubbled with nitrogen for 15 minutes, followed by addition of 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (2.3 g, 5.6 mmol) and $Pd_2(dba)_3$ (1.3 g, 1.4 mmol). The mixture was again bubbled nitrogen for 15 minutes, then N-(4-(9H-carbazol-3-yl)phenyl)-N-phenyldibenzo[b,d]thiophen-4-amine (3.4 g, 6.6 mmol), 4-io-dodibenzothiophene (3.3 g, 10.6 mmol), sodium tert-butoxide (1.4 g, 14.0 mmol) were added. The mixture was bubbled with nitrogen for 15 minutes and refluxed for 12 hours. After cooling, the reaction mixture was filtered through a silica pad and washed with 80% CH_2Cl_2 /hexane. The solvent was removed in vacuo and the residue was purified by flash chromatography using 20-35% CH_2Cl_2 /hexane to afford Compound 113 (2.9 g, 63% yield) as a white solid.

Synthesis of bis(4-bromophenyl)amine

N-bromosuccinimide (17.8 g, 0.1 mol) in 50 mL of DMF was added slowly to diphenylamine (8.46 g, 0.05 mol) in 50 mL of DMF at 0° C. in 30 minutes. The reaction was allowed to warm to room temperature and stir overnight. The white precipitate was filtered and air dried, and 16 g of product was collected.

Synthesis of di([1,1'-biphenyl]-4-yl)amine

Synthesis of N-([1',1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine

176

-continued

Di([1,1'-biphenyl]-4-yl)amine (3.5 g, 10.9 mmol) and 1-bromo-4-iodobenzene (6.0 g, 21.3 mmol) were mixed in 300 mL of dry toluene. The solution was bubbled with nitrogen while stirring for 15 minutes. $Pd(OAc)_2$ (36 mg, 0.16 mmol), triphenylphosphine (0.16 g, 0.6 mmol) and sodium t-butoxide (2.0 g, 20.8 mmol) were added in sequence. The mixture was heated to reflux overnight under nitrogen. After cooling, the reaction mixture was filtered through Celite®/silica pad and the solvent was then evaporated. The residue was then purified by column chromatography using DCM: hexane (1:4, v/v) as the eluent to obtain 3.9 g of product.

Synthesis of 9-(dibenzo[b,d]thiophen-4-yl)-9H-carbazole

Carbazole (0.62 g, 3.67 mmol) and 4-iododibenzothiophene (1.2 g, 3.87 mmol) were mixed in 70 mL of dry xylene. The solution was bubbled nitrogen while stirring for 15 minutes. Pdz(dba)₃ (0.16 g, 0.17 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.24 g, 0.58 mmol) and sodium tert-butoxide (1.0 g, 10.4 mmol) were added in sequence. The mixture was heated to reflux for 3 days under nitrogen. After cooling, the reaction mixture was filtered through a Celite®/silica pad and the solvent was then evapo-

10

15

20

rated. The residue was then purified by column chromatography using DCM:hexane (1:4, v/v) as the eluent to obtain 0.64 g of product.

Synthesis of 3-bromo-9-(dibenzo[b,d]thiophen-4-yl)-9H-carbazole

N-bromosuccinimide (0.31 g, 1.74 mmol) in 5 mL DMF was added slowly to 9-(dibenzo[b,d]thiophen-4-yl)-9H-carbazole (0.6 g, 1.72 mmol) in 50 mL of DCM at 0° C. The reaction was allowed to warm to room temp and stirred overnight. The reaction mixture was extracted with DCM and dried over MgSO₄ and the solvent was evaporated. The residue was purified by column chromatography using DCM: hexane (1:4, v/v) as the eluent to obtain 0.45 g of product.

Synthesis of 9-(dibenzo thiophen-4-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole

3-bromo-9-(dibenzo[b,d]thiophen-4-yl)-9H-carbazole (0.45 g, 1.1 mmol), bis(pinacolato)diboron (0.43 g, 1.4 mmol) and KOAc (0.31 g, 3.1 mmol) were mixed in 150 mL of dry 1,4-dioxane. The solution was bubbled with nitrogen while stirring for 15 minutes, then Pd(dppf)Cl₂.CH₂Cl₂ (26 mg, 0.03 mmol) was added. The mixture was heated to reflux overnight under nitrogen. After cooling, the reaction mixture was filtered through Celite®/silica pad and the solvent was then evaporated. The residue was then purified by column chromatography using DCM:hexane (3:7, v/v) as the eluent to obtain 0.4 g of product.

Synthesis of Compound 178

50

N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine (2.5 g, 5.25 mmol), and 9-(dibenzo[b,d] thiophen-4-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (2.64 g, 5.58 mmol) were mixed in 250 mL of toluene and 30 mL of deionized water. The solution was bubbled with nitrogen while stirring for 15 minutes, then $Pd_2(dba)_3$ (0.12 g, 0.13 mmol), 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl (0.21 g, 0.51 mmol) and K_3PO_4 (3.5 g, 16.5 mmol) were added in sequence. The mixture was heated to reflux overnight under nitrogen. Bromobenzene (1 mL) was added to the reaction mixture and the reaction was further refluxed for 4 hours. After cooling, the reaction mixture was filtered through a Celite®/silica pad and the solvent was then evaporated. Compound 178 (2.4 g) was collected and purified by recrystallization from 20 mL of degassed toluene.

Compound 182

Synthesis of 9-(triphenylen-2-yl)-9H-carbazole

To a stirred solution of Pd₂(dba)₃ (0.52 g, 0.57 mmol) in o-xylene (140 mL), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.94 g, 2.3 mmol) was added and degassed with nitrogen for 15 minutes. Carbazole (5.33 g, 31.9 mmol) and 2-bromotriphenylene (7.0 g, 22.7 mmol), sodium tert-butoxide (6.57 g, 68.3 mmol) were added and degassed with nitrogen for another 15 minutes. The reaction was refluxed for 2 days. The reaction mixture was filtered through silica, washed with DCM and dried under vacuum. Silica gel chromatography with 10% DCM/hexane, yielded 4.98 g of a while solid (56%) as the product.

Synthesis of 3-bromo-9-(triphenylen-2-yl)-9H-carbazole

To a stirred solution of 9-(triphenylen-2-yl)-9H-carbazole (4.7 g, 11.9 mmol) in DMF (24 mL) at 0° C. under $\rm N_2$, NBS (N-bromosuccinimide) (2.1 g, 11.9 mmol) in DMF (24 mL) 20 was added dropwise. After the completion of addition, the reaction mixture was warmed to room temperature overnight with vigorous stirring. The reaction mixture was precipitated with water and the solid was filtered. The pale grey solid was re-dissolved in a small amount of THF, added on a silica plug and flushed with 30% DCM/hexane. The filtrate was dried under vacuum and the white solid was used without further purification (5.5 g, 98 N.

Synthesis of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaboro-lan-2-yl)-9-(triphenylen-2-yl)-9H-carbazole

To a stirred solution of 3-bromo-9-(triphenylen-2-yl)-9H-carbazole (3.0 g, 6.4 mmol) in 1,4-dioxane (90 mL), bis (pinacolato)diboron (2.4 g, 9.5 mmol) and KOAc (1.8 g, 19.1 mmol) were added and degassed with nitrogen for 15 min, then Pd(dppf)Cl $_2$.CH $_2$ Cl $_2$ (0.14 g, 0.2 mmol) was added and the mixture was degassed with nitrogen for another 15 minutes. The solution was refluxed for 2 days. After cooling to room temperature, water (1 mL) was added and the reaction mixture was stirred for 30 minutes. The reaction mixture was filtered through silica and dried under vacuum. The solid was column chromatographed with 20-50% DCM/hexane, yielding 2.0 g of a while solid (61%) as the product.

Synthesis of Compound 182

To a stirred solution of N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine (0.9 g, 1.9 mmol) in toluene (29 mL) and water (2.9 mL), 3-(4,4,5,5-tetramethyl-1,3, 2-dioxaborolan-2-yl)-9-(triphenylen-2-yl)-9H-carbazole (1.0 g, 1.9 mmol) and K_3PO_4 (2.4 g, 11.3 mmol) were added and the mixture was degassed with nitrogen for 15 minutes, then Pd_2 (dba) $_3$ (86 mg, 0.09 mmol) and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.16 g, 0.38 mmol) were added and degassed with nitrogen for another 15 minutes. The mixture was refluxed overnight. After cooling to room temperature, the reaction mixture was filtered through silica, washed with DCM and dried under vacuum. It was column chromatographed with 20-50% DCM/hexane yielding 1.03 g of a while solid (69%) as Compound 182.

It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

The invention claimed is:

1. A compound having the formula:

Formula I

30

$$Ar_1$$
 Ar_2
 Ar_3
 R_3
 Ar_4
 R_4
 R_4
 R_4
 R_2 ;

wherein Ar₁ and Ar₂ are independently selected from the ⁵⁰ group consisting of aryl and heteroaryl; and

wherein X is selected from the group consisting of O, S, and Se;

wherein R_1 and R_2 independently represent mono, di, tri, tetra substitution, or no substitution; and

wherein R₁, R₂, R₃ and R₄ are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

wherein Ar1 and Ar2 are independently selected from the groups consisting of:

Compound 7

Compound 8

Compound 9

Compound 10

10

- 2. The compound of claim 1, wherein R_3 and R_4 are independently selected from the group consisting of alkyl, heteroalkyl, arylalkyl, aryl, and heteroaryl.
- 3. The compound of claim 1, wherein R_3 and R_4 are hydrogen or deuterium.

4. The compound of claim 1, wherein the compound has the formula:

1, wherein
$$R_3$$
 and R_4 are hydro-
20
1, wherein the compound has
25

55

60

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_4
 R_2
 R_2

$$Ar_1$$
 Ar_2
 R_3
 R_4
 R_1
 R_2
 R_2

50

5. The compound of claim 1, wherein X is O or S.

- 6. The compound of claim 1, wherein Ar_1 and Ar_2 are aryl.
- 7. The compound of claim 1, wherein the compound is selected from the group consisting of:

25

Compound 23

Compound 111 40

-continued

-continued

Compound 113

Compound 114

25

35

40

-continued

-continued

Compound 268

8. A first device comprising an organic light emitting device, further comprising:

an anode;

a cathode; an emissive layer disposed between the anode and the cathode;

a hole injection layer disposed between the anode and the emissive layer;

a first hole transport layer disposed between the hole injection layer and the emissive layer; and

a second hole transport layer disposed between the first hole transport layer and the emissive layer; and

wherein the second hole transport layer comprises a compound of formula:

Formula I

50

55

$$Ar_1$$
 Ar_2
 Ar_1
 R_3
 R_4
 R_4
 R_2
 R_2
 R_3
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5

wherein X is selected from the group consisting of O, S, and Se:

wherein R_1 and R independently represent mono, di, tri, 35 tetra substitution, or no substitution; and

wherein R₁, R₂, R₃, and R₄ are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkenyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

wherein Ar_1 and Ar_2 are independently selected from the groups consisting of:

-continued

9. The first device of claim 8, wherein the second hole transport layer is disposed adjacent to the first hole transport layer.

10. The first device of claim 8, wherein the first hole transport layer is thicker than the second hole transport layer.

11. The first device of claim 8, wherein the first hole transport layer comprises a compound with the formula:

$$\operatorname{Ar}_a$$
 Ar_b Ar_b Ar_b

wherein Ar_a , Ar_b , Ar_c and Ar_d are independently selected from the group consisting of aryl and heteroaryl.

12. The first device of claim 8, wherein the triplet energy of the compound of Formula II is higher than the emission energy of the emissive layer.

13. The first device of claim 8, further comprising a first dopant material that is an emissive dopant comprising a transition metal complex having at least one ligand or part of the ligand if the ligand is more than bidentate selected from the group consisting of:

$$R_a$$
 R_a
 R_a

40

-continued
$$R_d$$
, N

wherein R_a , R_b , R_c , and R_d may represent mono, di, tri, or tetra substitution, or no substitution;

wherein R_a , R_b , R_c , and R_d are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and

wherein two adjacent substituents of R_a , R_b , R_c , and R_d are 25 optionally joined to form a fused ring or form a multidentate ligand.

14. The first device of claim **8**, wherein the first device is a consumer product.

15. The first device of claim 8, wherein the first device is an organic light-emitting device.

16. The first device of claim **8**, wherein the first device comprises a lighting panel.

17. A first device comprising an organic light emitting device, further comprising:

an anode;

a cathode;

a first organic layer disposed between the anode and the cathode; and

wherein the first organic layer comprises a compound of $_{45}$ formula:

Formula I

$$Ar_1$$

$$Ar_2$$

$$Ar_3$$

$$Formula I$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_2,$$

$$GO$$

wherein Ar₁ and Ar₂ are independently selected from the groups consisting of:

wherein X is selected from the group consisting of O, S, 15 and Se:

wherein R1 and R2 independently represent mono, di, tri, tetra substitution, or no substitution; and

wherein R₁, R₂, R₃ and R₄ are independently selected from the group consisting of hydrogen, deuterium, halide, 20 alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

18. The first device of claim 17, wherein the first organic layer is an emissive layer.

19. The first device of claim 18, wherein the emissive layer is a phosphorescent emissive layer.

* * * *